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Abstract. Using the isomonodromy and Riemann–Hilbert methods, we perform a rigorous
global asymptotic analysis of the Clarkson–McLeod fourth Painlevé transcendent. In particular,
we prove some of the Clarkson–McLeod conjectures concerning the asymptotic behaviour, as
x → −∞, of the solutions of Painlev́e IV equation which decay asx → +∞. The relevant
exact connection formulae are also rigorously derived.

1. Introduction

In this paper we consider solutions of the fourth Painlevé (PIV) equation,

w′′ = (w′)2

2w
+ 3

2
w3+ 4xw2+ (−4α + β + 2x2)w − β2

2w
(1.1)

satisfying (under the assumption,β = 0) the boundary condition,

w(x)→ 0 asx →+∞. (1.2)

The study of this class of Painlevé transcendents was initiated in the work of Clarkson and
McLeod [1] and has been continued by Bassom, Clarkson, Hicks and McLeod (BCHM) in
the subsequent series of papers (see [1–4]). In particular, in [3] it is proven that, in the case
β = 0 and realα, any real solution of (1.1) satisfying boundary condition (1.2) is multiple
of the square of the parabolic cylinder functionDα− 1

2
(
√

2x), i.e.

w(x) ∼ k223/2D2
α− 1

2
(
√

2x) ∼ k22α+1x2α−1e−x
2

(1.3)

for some constantk2 ∈ R. Moreover, as it is also proven in [3], for anyk2, there exists a
unique solution of (1.1) (β = 0) asymptotic tok223/2D2

α− 1
2
(
√

2x).

The one-parameter familyw(x; k2) of solutions of the PIV equation (1.1) determined
by asymptotic condition (1.3) was first introduced in [1]. We will refer to the function
w(x; k2) as toClarkson–McLeod PIV transcendent.

One of the principal questions related tow(x; k2) is its behaviour asx → −∞. In [1]
it is conjectured that there exists the valuek∗ ≡ k∗(α) > 0 such that:

(1) if |k| < k∗ thenw(x) is smooth for all realx, and asx →−∞,

w(x) ∼ κ2
n2α+1x2α−1e−x

2 = κ2
n2n+

3
2x2ne−x

2
α − 1

2 = n ∈ N (1.4)
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or

w(x) = −2x

3
+ (−1)[α+

1
2 ] 4d√

3
sin

(
x2

√
3
− 4d2

√
3

ln(−
√

2x)+ c +O(x−2)

)
+O

(
1

x

)
α − 1

2
/∈ Z (1.5)

where [α + 1
2] denotes the integer part ofα + 1

2 and the constantsκn, d, c are dependent
on k;

(2) if |k| = k∗ then asx →−∞
w(x) ∼ −2x (1.6)

(3) if |k| > k∗ thenw(x) has a pole at some pointx0 ≡ x0(k) ∈ R.
In the caseα − 1

2 = n ∈ N, part (1) of this conjecture was proven in [1, 3] and the
following equations for the values ofκn andk∗ were obtained:

κ2
n(k) =

k2

1− 2
√

2πn!k2

(k∗)2 = 1

2
√

2πn!
.

(1.7)

In [1], it was also suggested that the following generalization of equation (1.7) for non-
integer values ofα − 1

2 takes place:

(k∗)2 = 1

2
√

2π0(α + 1
2)

(
α + 1

2
> 0

)
. (1.8)

(For some technical reason we use slightly different parametrization of the PIV equation
than the one used in [1–4]. IfαBCHM andβBCHM denoteα, β-parameters in [3] then their
relation to ourα, β is given by equations

αBCHM = 2α − β
2

βBCHM = −β
2

2
.

Equations (1.5) and (1.8) were thoroughly investigated and verified numerically in [4, 2].
The problem of their rigorous justification and the problem of evaluation of the exact
connection formulae for the asymptotic parametersd(k) and c(k) were left open. In this
paper we address these two problems via the framework of the isomonodromy method (IM)
(see [5, 6]; see also [7])

The first results concerning the application of the IM to the global asymptotic analysis
of the PIV equation are due to Kitaev [8]. In [8] a complete description (including all
the relevant connection formulae) of the asytmptotic behaviour of the general solution of
equation (1.1) asx → eiπ/4+iπj∞, j ∈ Z was obtained.

In this paper, we follow the general methodology of [9], i.e. we combine the IM, the
Deift–Zhou nonlinear steepest-descent method [10], and the Kitaev method [11] for the
justification of the asymptotic results obtained via the IM.

Our main result, which completes the proof (up to the error term) of part (1) of the
Clarkson–McLeod conjecture and supplements it by exact connection formulae for the
asymptotic parametersd(k) andc(k), can be formulated as in the following theorem.

Theorem 1.1.Let β, α, andk2 be the real numbers such that,

β = 0

α − 1
2 /∈ Z
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and

0< k22
√

2π0

(
α + 1

2

)
≡ k2

(k∗)2
< 1 (1.9)

and letw(x; k2) be the corresponding Clarkson–McLeod PIV transcendent, i.e. the unique
solution of equation (1.1) satisfying the boundary condition (1.3) asx → +∞. Then, the
Painlev́e transcendentw(x; k2) is a meromorphic function ofx whose asymptotic behaviour
asx →−∞ is described by the equation

w(x) = −2x

3
+ 2
√

2a cos

(
x2

√
3
−
√

3a2 ln(2
√

3x2)+ φ
)
+O((−x)−1/4 ln(−x)) (1.10)

where

a2 = − 1

2
√

3π
ln(1− |s−|2) a > 0

φ = −3π

4
− 2π

3
α − arg0(−i

√
3a2)− args−

s− = constant

(1.11)

and the connection between the asymptotic coefficientsk ands− is given by

s− = 1− 2(2π)3/2e−iπα

0( 1
2 − α)

k2. (1.12)

We note that equation (1.10) coincides, up to the error term, with equation (1.5) and
yields the following exact connection formulae for the parametersd(k) andc(k),

d2 = −
√

3

4π
ln(1− |s−|2) d > 0

c = −π
4
+ π

[
α + 1

2

]
− 2π

3
α − d2

√
3

ln 3− arg0

(
−i

2√
3
d2

)
− args−

where

s− ≡ s−(k) = 1− 2(2π)3/2e−iπα

0( 1
2 − α)

k2.

Remark 1.1.The meromorphicity ofw(x; k2) does not need to be proven; this is a well
known classical fact concerning Painlevé transcendents. Its elegant modern proof based on
the analysis of the corresponding Riemann–Hilbert problem is given in [12].

Remark 1.2.It should be emphasized that we do not claim thatw(x; k2) does not have
singularities on the real axes. Moreover, as it follows from the numerical analysis performed
in [4, 2],w(x; k2)might blow up at finitex if α < − 1

2. At the same time, the same numerical
results allows one to expect the absence of the real poles ofw(x; k2; ) if α > − 1

2.

Remark 1.3.As a by-product of the proof of theorem 1.1 (see remark 5.1 below) we also
obtain the followinglocal asymptotic result concerning the behaviour of the solutions of
the PIV equation asx →−∞.

Theorem 1.2.Let β, α, a, andφ be the real numbers such that,

α − 1
2 /∈ Z

and

a > 0
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(note that we do not assume thatβ = 0). Then there exists a solutionw(x) of equation
(1.1) which has the asymptotics indicated in (1.10) asx →−∞. This solution is unique if
the error term,O((−x)−1/4 ln(−x)), in (1.10) can be replaced byO(x−1).

As it has already been mentioned, this is a local statement, which does not reflect the
integrability of equation (1.1). In fact, in the caseβ = 0, α ∈ R the existence of the two-
parameter familyw(x; a, φ) of solutions of (1.1) characterized by the asymptotics (1.10)
with the error termO(x−1) has recently been proven by Abdulaev [13] without any use of
the isomonodromy method, i.e. without any use of the integrability of the PIV equation.
Moreover, combining the results of [13] with theorem 3.1 and corollary 4.1 below one can
replace the error term in (1.10) byO(x−1) for any k2 satisfying (1.9). This improvement
can also be achieved using only the isomonodromy technique. However, that comes at the
expense of much longer calculations.

Remark 1.4.Similar to the case of the second Painlevé equation (see [14]), the IM allows
us to obtain a complete list of all possible asymptotics of the solutions of (1.1) asx →∞,
x ∈ C. We shall publish this list elsewhere.

2. Monodromy parametrization of the PIV transcendent. The Riemann–Hilbert
problem

This section plays an important yet auxiliary role. For the reader’s convenience we collect
here, following [8], the necessary facts concerning the isomonodromy formalism for the PIV
equation. The detailed proofs of the results presented in this section can be found in [8]
and also in [15]. For the basic definitions and concepts related to the general monodromy
theory of systems of ordinary differential equations (ODEs) with rational coefficients we
refer the reader to the monograph [16] (see also [6]).

We shall use the Lax pair for equation (1.1) given in [8]:

∂9

∂ξ
=
{(

1

2
ξ3+ ξ(x + uv)+ α

ξ

)
σ3+ i(ξ2u+ 2xu+ u′)σ+ + i(ξ2v + 2xv − v′)σ−

}
9

(2.1)
∂9

∂x
=
{(

1

2
ξ2+ uv

)
σ3+ iξuσ+ + iξvσ−

}
9. (2.2)

Here,9(ξ, x) is a 2× 2 matrix function, andσ3, σ+, σ− denote the Pauli matrices:

σ3 =
(

1
−1

)
σ+ =

(
1

0

)
σ− =

(
0

1

)
.

The compatibility condition of equations (2.1) and (2.2) is equivalent to the following
system of nonlinear ODEs:

α′ = 0

u′′ + 2xu′ + u+ 2αu− 4xu2v − 2vuu′ = 0

v′′ − 2xv′ − v + 2αv − 4xuv2+ 2uvv′ = 0

(2.3)

which in turn implies that

β ≡ u′v − uv′ + 2xuv − (uv)2 = constant (2.4)

and the product

w = uv (2.5)
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satisfies equation (1.1). This means that equation (2.1) is the linear matrix ODE with
rational coefficients whose monodromy data, according to the IM formalism (cf [5, 6])
form a complete set of the first integrals of Painlevé equation (1.1) and hence parametrize
its solutions. We shall now describe this parametrization in detail.

Linear system (2.1) has two singular points: one irregular singular point atξ = ∞ and
one regular singular point atξ = 0. Monodromy data associated with the pointξ = ∞
consist of theStokes matricesSk defined by the equation,

Sk = 9−1
k (ξ)9k+1(ξ) k ∈ Z (2.6)

where9k(ξ) denote the corresponding canonical solutions of system (2.1). The solutions
9k(ξ) are uniquely determined by the following asymptotic conditions:

9k(ξ) = (I +O(ξ−1))eθσ3 θ = 1
8ξ

4+ 1
2xξ

2+ (α − β) ln ξ

ξ →∞ ξ ∈ ωk =
{
ξ ∈ C : argξ ∈

(
−3π

8
+ π

4
k; π

8
+ π

4
k

)}
k ∈ Z. (2.7)

We notice that

S2k−1 =
(

1 s2k−1

0 1

)
S2k =

(
1 0
s2k 1

)
and the complex parameterssk are calledStokes multipliers.

Besides the Stokes matrices, the monodromy data of (2.1) include theconnection matrix
E, which is defined by the equation,

91(ξ) = 90(ξ)E E =
(
a b

c d

)
detE = 1 (2.8)

where90(ξ) denotes the canonical solution near the regular singular pointξ = 0. Assuming
hereafter that

1
2 − α /∈ Z (2.9)

(the generic case), the solution90(ξ) is given by the equation,

90(ξ) = 9̂(ξ)ξασ3 (2.10)

where9̂(ξ) is holomorphic and invertible in the neighbourhood ofξ = 0, and

9̂(0) = exp

(∫ x

uv dx σ3

)
. (2.11)

We note that the function90(ξ) is defined by equations (2.10) and (2.11) up to the right
matrix multiplierCσ3, whereC is an arbitrary non-zero complex constant. This means that
the connection matrixE is defined up to the left multiplication by the constant diagonal
matrix Cσ3.

In the general case whenu(x), v(x), u′(x), v′(x) are just four arbitrary smooth functions,
the monodromy data{Sk, E} depend onx. The monodromy data do not depend onx iff

u′ = du

dx
v′ = dv

dx
and the functionsu, v satisfy system (2.3). In other words, all the Stokes multiplierssk and
the productsac, bd (see (2.8)) are the first integrals of the nonlinear system (2.3).

The Stokes matrices and multipliers satisfy certain general constraints. In fact, the set
of matrix solutions of equation (2.1) admits the symmetry automorphism,

9(ξ)→ σ39(−ξ). (2.12)
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Applying this automorphism to the canonical solutions atξ = ∞, one obtains the equations

Sk+4 = e−iπ(α−β)σ3σ3Skσ3eiπ(α−β)σ3 (2.13)

or

sk+4 = −ske(−1)k2π i(α−β). (2.14)

Simultaneously, from (2.12) and (2.10), (2.11) it follows that

σ39
0(eiπξ)σ3 = 90(ξ)eiπασ3. (2.15)

The combination of equations (2.6), (2.15), and (2.8) implies the so-called semicyclic
relation:

S1S2S3S4 = E−1σ3e−iπασ3Eeiπ(α−β)σ3σ3. (2.16)

This relation leads, in particular, to the equation

((1+ s1s2)(1+ s3s4)+ s1s4)e−iπ(α−β) − (1+ s2s3)eiπ(α−β) = −2i sinπα (2.17)

which, together with (2.14), indicates that only three of the Stokes multipliers are
independent. For instance, under the generic conditions,

s1+ s−1+ s1s−1s0 6= 0 (2.18)

the triple{s−1, s0, s1} form the coordinates on the manifold (2.17).
Givenα, β ∈ C, equation (2.17) describes a hypersurface in the spaceC4. From (2.16)

it follows that for the generic case (2.9) all essential parameters of the connection matrix
E are uniquely determined bysk (cf the next section, formula (3.15)). Therefore, in the
generic case the monodromy data manifold can be identified with the surface (2.17), and
any three independent Stokes multipliers, e.g.s−1, s0, s1, form a complete set of parameters
for the total set of monodromy data.

Under the gauge transformation,

9 7→ eκσ39e−κσ3 ⇔ Sk 7→ eκσ3Ske
−κσ3 (2.19)

the parametersu andv in (2.1) change to e2κu and e−2κv, respectively, so that the Painlevé
transcendent,w = uv, does not change. This means that any solution of PIV corresponds to
an orbit of the one-parameter group of the gauge transformations (2.19) of the monodromy
data manifold. The corresponding quotient manifold, which has dimension 2 in the generic
case (2.9), yields the parametrization of the entire PIV transcendent set. In other words, the
productss2k−1s2l and the ratiossk

sm
, with the integersk andm of the same parity, are the

first integrals of the PIV equation. In the generic case, any (independent) two of them can
be taken as universal parameters of the PIV transcendent.

Therefore, in the generic case (2.9) and under the generic conditions (2.18) the map,

{α, β,w,w′} 7→ {α, β, s−1s0, s1s0}
is one-to-one and the set,

s = {α, β, s−1s0, s1s0} (2.20)

can be chosen as the monodromy parametrizations of the solutions of the PIV equation (1.1).
Assuming thatx is real andu(x), v(x), u′(x), v′(x) are the arbitrary real-valued

functions, the space of matrix solutions of equation (2.1) admits the additional
automorphism,

9(ξ) 7→ σ39̄(ξ̄ ) (2.21)
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which in turn implies the extra symmetry equations for the Stokes matrices,

S0 = σ3S̄
−1
0 σ3 S1 = σ3S̄

−1
−1σ3. (2.22)

Hence, the real (for realx) solutions of (2.3) correspond to the additional restrictions on
the monodromy data,

s̄0 = s0 s̄−1 = s1. (2.23)

The reality condition for the functionsw(x),w′(x) is equivalent to the weaker than
(2.23) equation,

s−1s0 = s1s0. (2.24)

Therefore, given the realα, β ∈ R, and 1
2 − α /∈ Z the complex parameter,

s− = 1+ s1s0 (2.25)

is enough to parametrize the real (for realx) solutions of the fourth Painlevé equation (1.1).
As we will see in the next sections, the generic Clarkson–McLeod one-parametric family

of real solutions of (1.1) corresponds to the following specifications of the monodromy set
s:

(1− s−)eπ iα ∈ R β = 0. (2.26)

We note that under the generic condition (cf (2.18)),

|s−| 6= 1 (2.27)

restriction (2.26) and semicyclic relation (2.17) imply equations,

s1+ s3 = 0 and s2 = 0.

Besides the gauge transformation, the group ofSchlesinger transformationscan be
defined on the9-function set. The action of this group preserves all the monodromy
data except the formal monodromy exponents, i.e. the parametersα andβ, and yields the
Bäcklund transformationsof the corresponding solutions of the PIV equation (1.1). We
indicate specifically the following two Schlesinger transformations:

9̃ = R(0)9 and 9̃ = R(∞)9
where

R(0) = I + i

ξ

1+ 2α

2xv − v′ σ+
and

R(∞) =
(
ξ iu
− 1

iu 0

)
.

The corresponding B̈acklund transformations are given by the equations,

w̃ = w + 2(1+ 2α)w

w′ − (w2+ 2xw + β) α̃ = −α − 1 α̃ − β̃ = α − β (2.28)

and

w̃ = w′

2w
− w

2
− x + β

2w
α̃ = −α α̃ − β̃ = α − β + 1 (2.29)

respectively. Transformation (2.28) is due to Kitaev [8] and transformation (2.29) is
due to Lukashevich [17]. (For a comprehensive exposition of the theory of Bäcklund
transformations of the PIV equation and for a detailed historical review of the subject we
refer the reader to [18].)
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The theory of systems of linear ODEs with rational coefficients, and particularly the
complex WKB method, provides a tool for analysing thedirect monodromy problemfor
system (2.1), i.e. the map,

w 7→ s. (2.30)

To put the correspondinginverse monodromy problem, i.e. the inverse map,

s 7→ w (2.31)

into a proper analytical context, let us introduce a piecewise analytic matrix function9(ξ)

on the complex planeξ , which coincides with the function9k(ξ) in the closed sector

�k =
{
ξ ∈ C :

π(k − 1)

4
6 argξ 6 πk

4

}
k = 1, 2, . . . ,8. (2.32)

The function9(ξ) has the following characteristic properties:
(1) In the neighbourhood ofξ = ∞, the function9(ξ) satisfies the asymptotic condition

given by the equation (cf equation (2.7)),

9(ξ) = (I +O(ξ−1))eθσ3 θ = 1
8ξ

4+ 1
2xξ

2+ (α − β) ln ξ. (2.33)

(2) In the neighbourhood ofξ = 0, the function9(ξ) admits the representation given
by the equation (cf equations (2.8), (2.10)),

9(ξ) = 9̂(ξ)ξασ3E(ξ) (2.34)

where9̂(ξ) is holomorphic and invertible in the neighbourhood ofξ = 0, andE(ξ) is the
piecewise constant matrix:

E(ξ) = E ≡
(
a b

c d

)
ad − bc = 1 argξ ∈ �1

E(ξ) = ES1 . . . Sk−1 ξ ∈ �k k = 1, 2, . . . ,8.

(3) On the raysγk = {ξ ∈ C : argξ = π
4 k}, k = 1, . . . ,8, oriented from zero to infinity,

the function9(ξ) has jumps given by the equations (cf equation (2.6)),

9+(ξ) = 9−(ξ)Sk ξ ∈ γk k = 1, . . . ,7

9+(ξ) = 9−(ξ)S8e−2π i(α−β)σ3 ξ ∈ γ8
(2.35)

where the symbols9+ and9− denote the limits of the function9 on the raysγk from the
left and from the right, respectively.

The branches of the functionsξα and lnξ are fixed by the condition,

06 argξ 6 2π.

It is worth noticing that equation (2.11) does not need to be added in (2.34); it follows from
properties (1)–(3) of the9-function.

The inverse monodromy problem (2.31) for system (2.1) is equivalent (in the generic
case (2.9)) to the followingRiemann–Hilbert factorization problem: given Stokes matrices
Sk and connection matrixE satisfying conditions (2.13)–(2.16), find the piecewise analytic
function9(ξ) having properties (2.33)–(2.35). The Riemann–Hilbert problem is depicted
in figure 1.

The solution9(ξ) of the Riemann–Hilbert problem (2.33)–(2.35) is unique (if it exists)
and satisfies the symmetry equation,

9(ξ) =
{
σ39(−ξ)σ3e−iπ(α−β)σ3 for Im ξ > 0

σ39(−ξ)σ3eiπ(α−β)σ3 for Im ξ 6 0.
(2.36)
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Figure 1. The Riemann–Hilbert graphγ for the9-function.

Also, since the matricesSk, E depend neither onξ nor x, one concludes that the logarithmic
derivatives,9ξ(ξ)9(ξ)

−1 and9x(ξ)9(ξ)
−1, are rational functions ofξ . More exactly,

taking into account the asymptotic conditions (2.33), (2.34) atξ = ∞, 0 and the symmetry
relation (2.36) it follows that (cf [19])

9ξ(ξ)9(ξ)
−1 = 1

2ξ
3σ3+ A2ξ

2+ A1ξ + A0+ A−1ξ
−1 (2.37)

and

9x(ξ)9(ξ)
−1 = 1

2ξ
2σ3+ B1ξ + B0 (2.38)

with the matrix coefficientsAk andBk indicated in (2.1) and (2.2), respectively, and the
functionsu(x), v(x) given via the asymptotics of9(ξ) asξ →∞:

9(ξ) =
(
I + 1

ξ
(−iuσ+ + ivσ−)+O(ξ−2)

)
eθσ3. (2.39)

This provides the formula,

w(x, s) = m12m21

m = lim
ξ→∞

[ξ(9(ξ)e−θ − I )] (2.40)

for the solution of the Painlevé equation (1.1) corresponding to the given monodromy data
s. Alternatively, one can use the equation (cf (2.11)),

w(x, s) = d

dx
ln 9̂11(0). (2.41)

In the next three sections, we will prove the solvability of the Riemann–Hilbert problem
(2.33)–(2.35) for sufficiently large|x|, x ∈ R and under the assumptions (cf (2.26))

β = 0 α ∈ R α − 1
2 /∈ Z

s̄0 = s0 s̄−1 = s1
0< |s−| < 1 (1− s−)eπ iα ∈ R

(2.42)
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on the monodromy data. In fact we will take this further. We will obtain anexplicit
asymptotic solution of this problem, which will enable us to derive the connection formulae
(1.11), (1.12) announced in theorem 1.1 and eventually prove the theorem itself.

It is worth noticing that the inequality

0< |s−| < 1

implies inequality (2.27) so that assumptions (2.42) yield the equations,

s2 = s1+ s3 = 0 s1s0 6= 0.

It is in fact for these, weaker than (2.42) restrictions, that we will prove in the next section the
solvability of the problem (2.33)–(2.35) for sufficiently large positivex. The full constraint
(2.42) will be needed in sections 4 and 5 where we analyse the case of negativex.

We conclude this section by referring to [19, 12] where the solvability of the Riemann–
Hilbert problems which appear in the modern theory of the Painlevé equations, and which
are similar to the problem (2.33)–(2.35), are discussed in the general setting.

3. Solution of the inverse monodromy problem:x→+∞

In this section, we shall prove the following theorem.

Theorem 3.1.Suppose thats2 = 0, s1 + s3 = 0, s1s0 6= 0, β = 0, andα − 1
2 /∈ Z. Then for

sufficiently large positivex, the inverse monodromy problem for system (2.1) is uniquely
solvable, and the corresponding solutionw(x) of the PIV equation (1.1) possesses the
following asymptotic behaviour asx →+∞:

w(x) = − s1s0
π3/2

eiπα0

(
1

2
− α

)
2α−

3
2 e−x

2+(2α−1) ln x(1+O(x−1)). (3.1)

Proof. The proof is based on the asymptotic solution of the matrix Riemann–Hilbert problem
(2.33)–(2.35) via the Deift–Zhou nonlinear steepest descent method [10]. The restrictions
on the Riemann–Hilbert (monodromy) datas assumed in the theorem make the use of the
method especially convenient.

Assumingx > 0, we can perform the scaling transformation,

ξ 7→ x1/2ξ (3.2)

and

9 7→ x−
α−β

2 σ39. (3.3)

We shall keep the old notation,9(ξ), for the new9-function so that the asymptotic condition
(2.33) should be replaced by the condition,

9(ξ) = (I +O(ξ−1))eθσ3 θ = x2θ0+ (α − β) ln ξ θ0 = 1
8ξ

4+ 1
2ξ

2 (3.4)

and equations (2.40) and (2.41) should be replaced by the equations,

w(x, s) = xm12m21

m = lim
ξ→∞

[ξ(9(ξ)e−θ − I )] (3.5)

and

w(x, s) = − β
2x
+ d

dx
ln 9̂11(0) (3.6)

respectively.
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Our aim now is the asymptotic solution of the Riemann–Hilbert problem (3.4), (2.34),
(2.35) under the assumptions,

s2 = 0 s1+ s3 = 0 s1s0 6= 0 β = 0 (3.7)

and

x →+∞.
We start with observing that the equations,

s2 = 0 s1+ s3 = 0

imply that the jump matricesSk satisfy the relations

S2 = S6 = I S1S2S3 = S5S6S7 = I (3.8)

and therefore

92(ξ) = 93(ξ) 96(ξ) = 97(ξ) 94(ξ) = 91(ξ) 98(ξ) = 95(ξ). (3.9)

This means that the Riemann–Hilbert problem (2.33)–(2.35) is equivalent to the problem
on the contour (cf [10]),

γ4 ∪ γ8 ∪ γ̂1 ∪ γ̂5 (3.10)

which is shown in figure 2. The corresponding jump conditions are:

9+ = 9−S1 S1 =
(

1 s1
0 1

)
ξ ∈ γ̂1

9+ = 9−S4 S4 =
(

1 0
s4 1

)
ξ ∈ γ4

9+ = 9−S5 S5 =
(

1 −s1e−2π iα

0 1

)
ξ ∈ γ̂5

9+ = 9−S8e−2π iασ3 S8e−2π iασ3 =
(

e−2π iα 0
−s4 e2π iα

)
ξ ∈ γ8.

(3.11)

The curvesγ̂1 and γ̂5 are thesteepest-descent contoursof the exponentθ0, i.e.

Im θ0(ξ) = 0 ξ ∈ γ̂1,5 (3.12)

Figure 2. The Riemann–Hilbert graph for the degenerated problems2 = 0, s1 + s3 = 0.
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which are asymptotic to the raysγ1, γ3 andγ5, γ7, respectively. Orientation of the curves
γ̂1 and γ̂5 coincide with the orientation of the raysγ1 andγ5, respectively (see figure 2). In
addition, the curvêγ1 passes through the saddle point (d

dξ θ0(ξ) = 0),

ξ1 = i
√

2

while the curveγ̂5 passes through the saddle point

ξ2 = −i
√

2.

Simultaneously, under assumptions (3.7), the semicyclic relation (2.16) takes a very
simple form,

S4 = E−1σ3e−iπασ3Eeiπασ3σ3 (3.13)

or (
1 0
s4 1

)
=
(
ad + bce2iπα −2bd cosπα · e−iπα

−ac(e2iπα + 1) ad + bce−2iπα

)
(3.14)

and hence

b = 0 ad = 1 s4 = −ac(e2iπα + 1).

Therefore, we arrive to the following representation for the connection matrixE:

E = aσ3

(
1 0

− s4
e2π iα+1 1

)
(3.15)

and equation (2.34) for the reduced Riemann–Hilbert problem (3.11) assumes the form,

9(ξ) = 9̂(ξ)ξασ3

(
1 0

− s4
e2π iα+1 1

)
argξ ∈ [0;π ]

9(ξ) = 9̂(ξ)ξασ3

(
1 0

s4
e2π iα+1e2π iα 1

)
argξ ∈ [π; 2π ].

(3.16)

Let us define a new function,8(ξ), by the equation,

8(ξ) = 9(ξ)e−θσ3. (3.17)

In terms of8(ξ), the Riemann–Hilbert problem (3.11), (3.16) can be rewritten as the
following set of conditions.

(1)

8(ξ)→ I ξ →∞ (3.18)

(2)

8+ = 8−G1 G1 =
(

1 s1ξ
2αe2x2θ0

0 1

)
ξ ∈ γ̂1

8+ = 8−G4 G4 =
(

1 0
s4ξ
−2αe−2x2θ0 1

)
ξ ∈ γ4

8+ = 8−G5 G5 =
(

1 −s1(e−iπξ)2αe2x2θ0

0 1

)
ξ ∈ γ̂5

8+ = 8−G8 G8 =
(

1 0
−s4(e−iπξ−)−2αe−2x2θ0 1

)
ξ ∈ γ8.

(3.19)
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(3)

8(ξ) = 8̂(ξ)
(

1 0
− s4

e2π iα+1ξ
−2αe−2x2θ0 1

)
argξ ∈ [0;π ]

8(ξ) = 8̂(ξ)
(

1 0
s4

e2π iα+1(e
−π iξ)−2αe−2x2θ0 1

)
argξ ∈ [π; 2π ].

(3.20)

It should be emphasized that no asymptotic analysis has been made so far. The Riemann–
Hilbert problem (3.18)–(3.20) is just a reformulation of the original problem (2.33)–(2.35)
under the assumptions,s2 = s1+ s3 = 0, β = 0. The main advantage of this reformulation,
besides theI -normalization of the asymptotic condition atξ = ∞, is that the8-problem
is posed on the steepest-descent curves of the exponentθ0 so that all the jump matrices
approach exponentially the identity asx →∞.

Our next (and the final) step is the asymptotic solution of the problem (3.18)–(3.20).
The basic idea is to approximate the exact solution8(ξ) by the product,

80(ξ) ≡ Y (ξ)X(ξ)
where the matrix functionsX(ξ) andY (ξ) are the solutions of the model Riemann–Hilbert
problems related to the contoursγ̂1 ∪ γ̂5 andγ4 ∪ γ8 = R, respectively. More exactly, the
functionsY (ξ) andX(ξ) are determined by the conditions:

(1) Y (ξ) is analytic inC\γ̂1 ∪ γ̂5,
(2) Y (ξ)→ I asξ →∞,
(3)

Y+ = Y−G1 ξ ∈ γ̂1

Y+ = Y−G5 ξ ∈ γ̂5
(3.21)

and
(1) X(ξ) is analytic inC\γ4 ∪ γ8,
(2) X(ξ)→ I asξ →∞,
(3)

X+ = X−G4 ξ ∈ γ4

X+ = X−G8 ξ ∈ γ8
(3.22)

(4)

X(ξ) = X̂(ξ)
(

1 0
− s4

e2π iα+1ξ
−2αe−2x2θ0 1

)
argξ ∈ [0;π ]

X(ξ) = X̂(ξ)
(

1 0
s4

e2π iα+1(e
−π iξ)−2αe−2x2θ0 1

)
argξ ∈ [π; 2π ].

(3.23)

Assume temporarily that

Reα < 1
2. (3.24)

Then both the model problems, (3.21) and (3.22), can be solved explicitly in terms of the
Cauchy integrals:

Y (ξ) = I + y(ξ)σ+ X(ξ) = I + h(ξ)σ− (3.25)
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where

y(ξ) = s1

2π i

∫
γ̂1

τ 2αe2x2θ0(τ )

τ − ξ dτ − s1

2π i

∫
γ̂5

(e−iπτ )2αe2x2θ0(τ )

τ − ξ dτ

= s1

π i
ξ

∫
γ̂1

τ 2αe2x2θ0(τ )

τ 2− ξ2
dτ (3.26)

h(ξ) = s4

2π i

∫
γ4

τ−2αe−2x2θ0(τ )

τ − ξ dτ − s4

2π i

∫
γ8

(e−iπτ−)−2αe−2x2θ0(τ )

τ − ξ dτ

= s4

π i
ξ

∫
γ4

τ−2αe−2x2θ0(τ )

τ 2− ξ2
dτ (3.27)

and the integrals in (3.27) are well defined due to assumption (3.24).
Now let R(ξ) be a matrix ratio,

R(ξ) = 8(ξ)[80(ξ)]
−1 = 8(ξ)X(ξ)−1Y (ξ)−1. (3.28)

A comparison of equations (3.19), (3.20) and (3.22), (3.23) shows thatR(ξ) has no jumps
and singularities on the real axis, includingξ = 0, but still have jumps on the contour
γ̂1 ∪ γ̂5 where it solves the following Riemann–Hilbert problem:

(1) R(ξ)→ I asξ →∞,
(2)

R+ = R−G0 (3.29)

where

G0 = Y−XG1,5X
−1G1,5

−1Y−−1 ξ ∈ γ̂1,5. (3.30)

The curvesγ4, γ̂1, and γ̂5 are the steepest-descent contours for the exponentθ0(ξ) (see
(3.12)) so that the integral representations (3.26) and (3.27) lead to the uniform estimates,

|y−(ξ)| < C

|ξ |e
−x2

(3.31)

and

|h(ξ)| < C

|ξ |x
2Reα−1 (3.32)

for all x > 1 andξ ∈ γ̂1 ∪ γ̂5. Rewriting equation (3.30) componentwise, we derive from
(3.31), (3.32) the inequalities,

‖I −G−1
0 (ξ)‖ < C|ξ |2Reα−1x2Reα−1e2x2θ0(ξ) (3.33)

and

|(G−1
0 (ξ))12| < C|ξ |2Reα−1x2Reα−1e−x

2+2x2θ0(ξ) (3.34)

which hold uniformly for allx > 1 andξ ∈ γ̂1 ∪ γ̂5. In addition, from (3.33) we have an
estimate for the correspondingL2-norm as well:

‖I −G−1
0 ‖L2(γ̂1∪γ̂5) < Cx2Reα− 3

2 e−x
2
. (3.35)

We note that the actual value of the positive constantC is not important to us and may be
different in different formulae.
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By a standard technique in the theory of the Riemann–Hilbert problem (see e.g. [20];
see also [21, 10]), the solutionR(ξ) of the Riemann–Hilbert problem (3.29) is given by the
formula

R(ξ) = I + 1

2π i

∫
γ̂1∪γ̂5

ρ(τ)
[
I −G−1

0 (τ )
] dτ

τ − ξ (3.36)

whereρ(ξ) ≡ R+(ξ) solves the equation

ρ = I + C+[ρ(I −G−1
0 )] (3.37)

in L2(γ̂1 ∪ γ̂5)), andC+ is the corresponding Cauchy operator.
The L2-boundness of the operatorC+ (see e.g. [22, 20]; see also [21, 23]), together

with estimates (3.33), (3.35) imply the solvability of the singular integral equation (3.37)
for sufficiently large positivex and the asymptotic equation,

‖I − ρ‖L2(γ̂1∪γ̂5) = O(x2α− 3
2 e−x

2
) x →+∞ (3.38)

for its solutionρ(ξ).
The solvability of the singular integral equation (3.37) yields the solvability of the

Riemann–Hilbert problem (3.29). Rewriting representation (3.36) for the solutionR(ξ) in
the form,

R(ξ) = I + 1

2π i

∫
γ̂1∪γ̂5

[I −G−1
0 (τ )]

dτ

τ − ξ +
1

2π i

∫
γ̂1∪γ̂5

[ρ(τ)− I ][I −G−1
0 (τ )]

dτ

τ − ξ
and applying again estimates (3.33), (3.35) together with estimates (3.38) and (3.34), we
conclude that the inequalities,

‖I − R(ξ)‖ < C

|ξ |x
2Reα−2e−x

2
(3.39)

and

|R12(ξ)| < C

|ξ |x
2Reα−2e−2x2

(3.40)

take place uniformly for allξ ∈ iR, |ξ | > 2
√

2.
The solvability for sufficiently largex of the Riemann–Hilbert problem for function

R(ξ) implies in turn the solvability of the basic Riemann–Hilbert problem (3.18)–(3.20) and
hence the solvability, for sufficiently large positivex, of the inverse monodromy problem for
system (2.1) under assumptions (3.7). Moreover, estimates (3.39), (3.40) and equations (3.5),
(3.28), (3.25) lead to the following asymptotic representation for the corresponding Painlevé
functionw(x):

w(x) = x(m0
12+O(x2α−2e−2x2

))(m0
21+O(x2α−2e−x

2
)) (3.41)

where

m0
12 =

i

π
s1

∫
γ̂1

τ 2αe2x2θ0(τ ) dτ

and

m0
21 =

i

π
s4

∫
γ4

τ−2αe−2x2θ0(τ ) dτ.

Evaluating the last two contour integrals by theclassicalsteepest-descent method, we obtain
that

m0
12 =

i√
2π
s12αeiπα e−x

2

x
(1+O(x−1))
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and

m0
21 =

1

2π i
s4e−2iπαx2α−10

(
1

2
− α

)
(1+O(x−1))

which, in virtue of (3.41), yields the asymptotics of the Painlevé functionw presented in
the theorem:

w = s1s4

π3/2
e−iπα0

(
1

2
− α

)
2α−

3
2 e−x

2+(2α−1) ln x(1+O(x−1)) x →+∞ (3.42)

(note that due to (2.14)s4 = −s0e2iπα).
Asymptotics (3.42) has the form (1.3) with the parameter

k2 = −s0s1eiπα 1

2(2π)3/2
0

(
1

2
− α

)
. (3.43)

Moreover, if we want the asymptotics (3.42) to be consistent with the reality condition, the
extra restriction,

s1s4e−iπα ≡ −s0s1eiπα ∈ R (3.44)

should be imposed on the monodromy data. This in turn yields specification (2.26) of the
Clarkson–McLeod Painlevé transcendent.

In [3] it was shown that a suitable chain of the Bäcklund transformations (2.28) and
(2.29), properly combined with the transformation generated by the rotation,x 7→ ix,
preserves the Stokes multiplierssk and the value of the parameterβ = 0 and transforms
α 7→ α + 1. Moreover, the same chain of the Bäcklund transformations preserves the
exponential behaviour (1.3) with the substitutions:

α 7→ α + 1

k2 7→ k2

α + 1
2

.

In view of equation (3.43), this allows us to drop the condition Reα < 1
2 in formula (3.42)

and hence complete the proof of theorem 3.1. �

4. Solution of the direct monodromy problem: x→−∞

Let us make the gauge transformation (2.19) withκ = 1
2 ln v − 1

4 ln(−x):
9 7→ (−x)− σ3

4 v
σ3
2 9v−

σ3
2 (−x) σ3

4 (4.1)

so that the basic system (2.1) transforms to the matrix equation,

d9

dξ
=
{(

1

2
ξ3+ ξ(x + w)+ α

ξ

)
σ3+ i(−x)−1/2w

(
ξ2+ x + w′

2w
+ 1

2
w + β

2w

)
σ+

+ i(−x)1/2
(
ξ2+ x − w′

2w
+ 1

2
w + β

2w

)
σ−

}
9. (4.2)

This equation belongs to the general class of systems (2.1) (u′, v′ are not necessarily the
x-derivatives ofu, v), and it is specified by the condition,

v = (−x)1/2. (4.3)
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Condition (4.3) is not gauge invariant, and the monodromy data for system (4.2) are uniquely
determined, in the generic case, by two complex parameters,

s−1s0 s1s0

for complex pairs{w,w′}, and by one complex parameter,

s− = 1+ s1s0 (4.4)

for real pairs{w,w′}. This fact, which implies the injectivity of the map,

{w,w′} 7→ s− (w,w′ are real) (4.5)

has already been mentioned in section 2 (see (2.20)–(2.25)) where the monodromy theory
for the systems of class (2.1) has been outlined (without the detailed proofs) according to
[8]. The injectivity of map (4.5) will be especially important to us in section 5 and will be
proven there for the reader’s convenience.

It is also worth mentioning that for the arbitrary pair of the real-valued (for realx)
functionsw(x),w′(x), the monodromy parameters− depends onx. It does not depend on
x iff

w′ = dw

dx
and the functionw(x) satisfies the PIV equation (1.1). It should be emphasized that
even in this case the Stokes matrices of system (4.2)may depend onx via the similarity
transformation,

Sk(x) = eκ(x)σ3Sk(0)e
−κ(x)σ3.

The main objective of this section is the following result.

Theorem 4.1.Let α, β ∈ R, ands∗−, s− be the complex numbers satisfying the conditions,

0< |s∗−| < 1 (4.6)

and

s− ∈ D(s∗−; ε) = {s− ∈ C : |s− − s∗−| 6 ε} 0< ε < min{1− |s∗−|, |s∗−|}. (4.7)

Define the functionsw(x) andw′(x) in (4.2) by the equations,

w ≡ ŵ(x, s−) = −2x

3
+ 2
√

2a cos2 w′ ≡ dŵ(x, s−)
dx

(4.8)

where

a2 = − 1

2
√

3π
ln(1− |s−|2) a > 0 (4.9)

2 = x2

√
3
−
√

3a2 ln(2
√

3x2)+ φ (4.10)

φ = −3π

4
− 2π

3
(α − β)− arg0(−i

√
3a2)− args−

and denote

ŝ−(x, s−) ≡ 1+ ŝ0ŝ1(x, s−)
the corresponding monodromy parameter (4.4). Then there exist real constantsC(s∗−; ε) > 0
andx0(s

∗
−; ε) < −1 such that

|ŝ−(x, s−)− s−| 6 (−x)− 1
4C(s∗−; ε) (4.11)
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for all

x < x0(s
∗
−; ε) s− ∈ D(s∗−; ε).

As it is indicated, the constantsC(s∗−; ε) andx0(s
∗
−; ε) only depend ons∗− andε.

Throughout this section, the dependence of all the estmates onα andβ is not important
to us. The crucial point is that the r.h.s. of inequality (4.11)does not depend ons−, i.e.
estimate (4.11) is uniform onD(s∗−; ε). This will allow us to use Kitaev’s method [11] and
transform in section 5 (see theorem 5.1) the above result into the rigorous statement about
the asymptotic behaviour of the Painlevé transcendentw(x, s−), 0< |s−| < 1 asx →−∞.

Proof of theorem 4.1.The change of variables,

ξ = (−x)1/2λ w = (−x)r w′ = −(−x)2
(
r ′ + r

2t

)
r ′ = dr

dt
t = 1

2
(−x)2 8(λ) = 9(ξ(λ))

(4.12)

brings equation (4.2) to the form:

d8

dλ
= 2t

{(
1

2
λ3+ λ(r − 1)+ α

2tλ

)
σ3+ ir

(
λ2− 1+ r

2
+ β

4tr
−
(
r ′

2r
+ 1

4t

))
σ+

+ i

(
λ2− 1+ r

2
+ β

4tr
+
(
r ′

2r
+ 1

4t

))
σ−

}
8 ≡ 2tA8. (4.13)

The matrixA is already of orderO(1). Hence, in carring out the relevant asymptotic
analysis, one can appeal to the classical WKB-method (see [24–26]).

One of the principal elements of the complex WKB-method is the eigenvalues of the
system (4.13), i.e.

µ1,2 = ±µ = ±
√− detA

which are given by the equation,

µ2 = 1

4

(
λ2− 8

3

)(
λ2− 2

3

)2

+ α − β
2t

λ2+ p + α2

4t2λ2
(4.14)

where

p = 1

4r

(
r ′ + r

2t

)2
− 1

4

(
r − 8

3

)(
r − 2

3

)2

− β − 4α

4t
r − 2α − β

2t
− β2

16t2r
.

Because of assumption (4.8),

r = 2

3
+ 2a√

t
cos2

r ′ + r

2t
= − 4a√

3t

(
1− 3a2

2t

)
sin2+ 1

3t

2 = 2t√
3
−
√

3a2 ln(4
√

3t)+ φ

(4.15)

and we have the estimates,
1
3 < r < 1

|p| 6 1

t
c0(a)

∣∣∣∣p − 2a2

t
− β − α

3t

∣∣∣∣ 6 1

t3/2
c0(a)

(4.16)
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for all

t > t0(a) > 1 a : 0< a1 6 a 6 a2 < +∞
where the positive constantst0(a) andc0(a) depend continuously on the quantitya.

System (4.13) has eight (ifα 6= 0) and six (ifα = 0) real turning points, i.e. the zeros
of µ(λ). It follows from (4.14) and (4.16) that these points can be numerated in such way
that ∣∣∣∣∣λ1,3−

√
2

3

∣∣∣∣∣ 6 1√
t
c1(a) λ3 <

√
2

3
< λ1 λ2,4 = −λ1,3∣∣∣∣∣λ5−

√
8

3

∣∣∣∣∣ 6 1

t
c1(a) λ6 = −λ5

|λ7,8| 6 1

t
c0(a) λ8 = −λ7 λ7 > 0 α 6= 0

(4.17)

for all

t > t1(a) a : 0< a1 6 a 6 a2 < +∞
and some positivet1(a), c1(a) depending continuously ona.

The pointsλ1 and λ3 tend to
√

2
3 as t → ∞, and therefore the point

√
2
3 should be

considered as an asymptotically double turning point. The pointsλ2,4 behave similarly, so

that the point−
√

2
3 is another double turning point. The pointsλ5 andλ6 = −λ5 are the

single turning points. The turning pointsλ7 and λ8 = −λ7 merge with the singularity at
the point zero.

Using the continuity of the mapping,

s− 7→ a =
√
− 1

2
√

3π
ln(1− |s−|2)

and the compactness of the domainD(s∗−; ε), we conclude from (4.16) and (4.17) that there
exist the positive constantsC = C(s∗−; ε) and t0(s∗−; ε) > 1 such that

|p| 6 1

t
C(s∗−; ε)∣∣∣∣p − 2a2

t
− β − α

3t

∣∣∣∣ 6 1

t3/2
C(s∗−; ε)

1
3 < r < 1∣∣∣∣∣λ1,3−

√
2

3

∣∣∣∣∣ 6 1√
t
C(s∗−; ε)∣∣∣∣∣λ5−

√
8

3

∣∣∣∣∣ 6 1

t
C(s∗−; ε)

|λ7| 6 1

t
C(s∗−; ε)

∀s− ∈ D(s∗−; ε) ∀t > t0(s
∗
−; ε).

(4.18)

Remark 4.1.Hereafter we shall assume the following convention.
The symbolsC,Cj , andt0 denote positive constants, which only depend ons∗− andε:

C = C(s∗−; ε) Cj = Cj(s∗−; ε) t0 = t0(s∗−; ε).
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Symbol t1, which will appear later, denotes positive constant, which only depends ons∗−,
ε, andδ:

t1 = t1(s∗−; ε; δ).
The actual values ofC,Cj , t0, andt1 are not important to us and may be different in different
formulae.

Let us now outline the basic steps of the IM technique (cf [7, 9]) which we are going
to use in our proof.

(1) Calculation of the WKB-solutions8WKB
+ and 8WKB

− associated with the double

turning point
√

2
3 and related to the Stokes rays argλ = 3π

8 and argλ = − 3π
8 , respectively.

(2) Calculation of the solution8TP near the double turning point
√

2
3.

(3) Matching of the canonical solutions92 and9−1 with the WKB-solutions8WKB
+

and8WKB
− respectively. Asymptotic evaluation of the matrices,

C± = [8WKB
± (λ)]−192,−1(ξ(λ)). (4.19)

(4) Matching of the WKB-solutions8WKB
± with the turning point solution8TP.

Asymptotic evaluation of the matrices,

N± = [8TP(λ)]−18WKB
± (λ). (4.20)

(5) Using the equation,

C−1
− N

−1
− N+C+ = Ŝ−1Ŝ0Ŝ1 ≡

(
1+ ŝ−1ŝ0 ŝ−1+ ŝ1+ ŝ−1ŝ0ŝ1

ŝ0 1+ ŝ0ŝ1
)

(4.21)

for the derivation of the asymptotic formula for the indicated product of the Stokes
matrices corresponding to the coefficient functionw = ŵ(x, s−) given in (4.8). Asymptotic
evaluation of the monodromy parameter,

ŝ− = (Ŝ−1Ŝ0Ŝ1)22. (4.22)

Technically, we are going to perform the standard WKB-type calculations (cf [7]) but by
undertaking special efforts (cf [9]) to secure that all the estimates are uniform with respect
to s ∈ D(s∗−; ε).

Step 1. WKB-approximation.Let us introduce the notationsa3, a+, a− for the entries of
the matrixA from (4.13):

A = a3σ3+ a+σ+ + a−σ−. (4.23)

Consider the gauge transformation of the matrix8,

8(λ) = T (λ)Y (λ) (4.24)

with the matrixT given by

T =
(

1 1
h1 h2

)
(4.25)

where

h1 = µ− a3

a+
− 1

2t
· 1

2µ

(
µ− a3

a+

)′
h2 = −µ+ a3

a+
− 1

2t
· 1

2µ

(
µ+ a3

a+

)′
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and (. . .)′ ≡ d
dλ (. . .). Here,µ2 = a2

3 + a+a−, and its exact expression is given in (4.14).
We also assume that the functionµ(λ) is defined on the complex plane cut along the small
segments(λ1; λ3), (λ2; λ4), (λ7; λ8) and along the rays(λ5;+∞), (λ6;−∞). The branch
of the root is chosen in such a way thatµ(λ)→ 1

2λ
3− λ asλ→+i∞.

The new functionY (λ) satisfies the equation

dY

dλ
= 2tBY (4.26)

with the matrix

B =
(
a3+ a+h1+H1 H2

−H1 a3+ a+h2−H2

)
(4.27)

where

a3+ a+h1 = µ− 1

2t
· a+

2µ

(
µ− a3

a+

)′
a3+ a+h2 = −µ− 1

2t
· a+

2µ

(
µ+ a3

a+

)′
H1 = 1

4t2
1

1+ a+
4tµ2

(
a3
a+

)′ · a+2µ

[
−a+

(
1

2µ

(
µ− a3

a+

)′)2

+
(

1

2µ

(
µ− a3

a+

)′)′]

H2 = 1

4t2
1

1+ a+
4tµ2

(
a3
a+

)′ · a+2µ

[
−a+

(
1

2µ

(
µ+ a3

a+

)′)2

+
(

1

2µ

(
µ+ a3

a+

)′)′]
.

Let

3 =
µ− 1

2t
a+
2µ

(
µ−a3

a+

)′
−µ− 1

2t
a+
2µ

(
µ+a3

a+

)′


= µσ3+ 1

4tµ

(
a′3− a3

a′+
a+

)
σ3− 1

4t

(
µ′

µ
− a

′
+
a+

)
I (4.28)

and

R = B −3 =
(
H1 H2

−H1 −H2

)
. (4.29)

The WKB solution of (4.26) associated with the double turning point
√

2
3 can be defined as

YWKB(λ) = χ(λ) exp

{
2t
∫ λ

λ0

3 dλ

}
(4.30)

where the lower limitλ0 can be chosen arbitrary, and the matrix functionχ(λ) satisfies the
integral equation,

χ(λ) = I + 2t
∫
γ (λ)

e(2t
∫ λ
ζ
3(z) dz)

R(ζ )χ(ζ )e(−2t
∫ λ
ζ
3(z) dz) dζ

= I + 2t
∫
γ (λ)

e2t
∫ λ
ζ
µ(z)dzσ3{e

∫ λ
ζ
η(z) dzσ3R(ζ )χ(ζ )e−

∫ λ
ζ
η(z) dzσ3}

×e−2t
∫ λ
ζ
µ(z)dzσ3 dζ

η(z) = 1

2µ

(
a′3− a3

a′+
a+

)
.

(4.31)
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Here, γ (λ) = (γ1(λ); γ2(λ)) is a matrix of the canonical paths (cf [26]), i.e. the simple
contours which start atλ and end up at∞, and which satisfy the conditions:

Re
∫ λ

ζ

µ(z)dz ↑ +∞ ζ →∞ ζ ∈ γ1(λ)

Re
∫ λ

ζ

µ(z)dz ↓ −∞ ζ →∞ ζ ∈ γ2(λ).

(4.32)

Matrix equation (4.31) should be understood as the system of four scalar equations:

χlk(λ) = δlk + 2t
∫
γk(λ)

e2t
∫ λ
ζ
(3ll (z)−3kk(z)) dz

(R(ζ )χ(ζ ))lk dζ.

Let γ 1,3
± be the anti-Stokes’ lines defined by the equations,

Im
∫ λ

λ1,3

µ(z)dz = 0

and asymptotic to the the rays, argλ = ±π
4 , (γ 1

±) and argλ = ±π
2 , (γ 3

±). We denoteD±
the corresponding canonical domains:

∂D± = γ 1
± ∪ γ 3

± ∪ [λ3, λ1]. (4.33)

We note that domainD+(D−) contains exactly one Stokes ray, i.e. the ray, argλ = 3π
8 (− 3π

8 ).
We shall use universal symbolD for the canonical domains when the distinction between

D+ andD− does not play any role.
Being a canonical domain means exactly (cf [26]) that for eachλ ∈ D there exists

matrix γ (λ) of the indicated above canonical paths such that:
(1) γ1,2(λ) ⊂ D ∀λ ∈ D,
(2) for any two points,λ, λ′ ∈ D, the following equation takes place:

γj (λ)− γj (λ′)+ [λ′, λ] = ∂�j (λ, λ′) j = 1, 2

for some bounded�j(λ, λ′) ⊂ D. In other words, any twoγj (λ), γj (λ′) have the same
infinite parts.

Integral equation (4.31) is written for the canonical domainD. Property (4.32) of the
canonical paths and properties (1) and (2) of the canonical domain imply that the integral
operator on the r.h.s. of (4.31) is well defined as a bounded operator on the Banach space
of holomorphic and bounded inD matrix functions. Our next task is to estimate the norm
of this integral operator.

To analyse integral equation (4.31) we need some basic estimates. Let

Dδ = {λ ∈ D : dist{λ; ∂D} > t− 1
2+δ}

1
2 > δ > 0

(4.34)

and rewrite the entriesa3, a+ in the form:

a3 = 1

2
λ

(
λ2− 2

3

)(
1+ g

t1/2(λ2− 2
3)

)

g = 2t1/2
(
r − 2

3

)
+ α

t1/2λ2
|g| 6 C t > 1 |λ| > ρ > 0

(4.35)

a+ = ir

(
λ2− 2

3

)(
1+ h

t1/2(λ2− 2
3)

)

h = t1/2

2

(
r − 2

3

)
+ β

4t1/2r
− t

1/2

2r

(
r ′ + r

2t

)
|h| 6 C t > t0.

(4.36)
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Let us also expand the functionsµ(λ), µ−1(λ) anda−1
+ in the series over the inverse powers

of λ2− 2
3:

µ±1(λ) =
[

1

2

(
λ2− 2

3

)√
λ2− 8

3

]±1(
1±

∞∑
n=1

c±n
νn(λ)

tn(λ2− 2
3)

2n

)
(4.37)

1

a+
= −i

r(λ2− 2
3)

(
1+

∞∑
n=1

(−1)n
hn

tn/2(λ2− 2
3)
n

)
− i = e−

iπ
2 (4.38)

where

c−n = (2n− 1)c+n =
(−1)n−1

2n
(2n− 1)!!

n!

ν(λ) = 4

(
λ2− 8

3

)−1(
α − β

2
λ2+ tp + α2

4tλ2

) (4.39)

andh is given in (4.33). From (4.39) and (4.16) we immediately conclude that

|ν(λ)| 6 C |ν ′(λ)| 6 C

|λ|3 |ν ′′(λ)| 6 C

|λ|4
∀λ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t0.

These inequalities, together with the similar inequalities forg andh (see (4.35) and (4.36)),
imply that there exists positive constantt1 = t1(s∗−; ε; δ) such that the series in (4.37) and
(4.38) and their term-by-term derivatives with respect toλ converge uniformly for

(λ, s−, t) ∈ Dδ ×D(s∗−; ε)× [t1,+∞).
This fact justifies the obvious sequence of elementary formal manipulations with the series
(4.37), (4.38) which leads to the following uniform estmates for the quantaties involved in
the matricesH1,2:∣∣∣∣ a+2µ

∣∣∣∣ 6 C (4.40)

1

|1+ a+
4tµ2 (

a3
a+
)′| 6 C (4.41)∣∣∣∣ 1

2µ

(
µ± a3

a+

)′∣∣∣∣ 6 C |λ|
|λ2− 2

3|2
(4.42)

|a+|
∣∣∣∣ 1

2µ

(
µ± a3

a+

)′∣∣∣∣2 6 C |λ|2
|λ2− 2

3|3
(4.43)∣∣∣∣∣

(
1

2µ

(
µ± a3

a+

)′)′∣∣∣∣∣ 6 C |λ|2
|λ2− 2

3|3
(4.44)

∀λ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

We emphasize (cf remark 4.1) that positive constantsC and t0 in all our formulae depend
only on s∗− andε:

C, t0 = C(s∗−; ε), t0(s∗−; ε).
Positive constantt1 depends only ons∗−, ε andδ:

t1 = t1(s∗−; ε; δ).
Inequalities (4.40)–(4.44) imply the following proposition.
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Proposition 4.1.For everys− ∈ D(s∗−; ε) and t > t1 reminderR(λ) defined in (4.29) is
holomorphic inDδ and satisfies the uniform estimate

‖R(λ)‖ 6 C |λ|2
t2|λ2− 2

3|3
∀λ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.45)

To estimate the part,

exp

{∫ λ

ζ

η(z) dz

}
of the kernel of integral equation (4.31) we note that from (4.35), (4.36), and (4.38) it
follows that ∣∣∣∣a′3− a3

a′+
a+
− 1

2

(
λ2− 2

3

)∣∣∣∣ 6 C |λ|2√
t |λ2− 2

3|
∀λ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.46)

Simultaneously, series (4.37) yields the equation,

1

µ(λ)
= 2√

λ2− 8
3(λ

2− 2
3)

(1+ µ0) (4.47)

where

|µ0| 6 C

t |λ2− 2
3|2
6 C1

t2δ
. (4.48)

for all

λ ∈ Dδ s− ∈ D(s∗−; ε) and t > t1.

Inequalities (4.46)–(4.48) lead to the estimates,∣∣∣∣ 1

2µ

(
a′3− a3

a′+
a+
− 1

2

(
λ2− 2

3

))∣∣∣∣ 6 C√
t

|λ|
|λ2− 2

3|2
(4.49)

and∣∣∣∣ ∫ λ

ζ

(
a′3(z)− a3(z)

a′+(z)
a+(z)

− 1

2

(
z2− 2

3

))
dz

2µ(z)

∣∣∣∣
=
∣∣∣∣{ ∫ ∞

ζ

+
∫ λ

∞

}(
a′3(z)− a3(z)

a′+(z)
a+(z)

− 1

2

(
z2− 2

3

))
dz

2µ(z)

∣∣∣∣
6 C√

t

∫ ∞
ζ

|z|
|z2− 2

3|2
|dz| + C√

t

∫ ∞
λ

|z|
|z2− 2

3|2
|dz| 6 C1

t δ

∀λ, ζ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1 (4.50)

(the integration in the last two integrals is performing along the rays inDδ). This in turn
means that∣∣∣∣ exp

{∫ λ

ζ

(
a′3(z)− a3(z)

a′+(z)
a+(z)

− 1

2

(
z2− 2

3

))
dz

2µ(z)

}
− 1

∣∣∣∣ 6 C

tδ

∀λ, ζ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.51)
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At the same time, because of (4.47), (4.48) we have

∫ λ

ζ

z2− 2
3

4µ(z)
dz = 1

2
ln
λ+

√
λ2− 8

3

ζ +
√
ζ 2− 8

3

+ µ1 (4.52)

where

|µ1| 6 C

t

∫ ∞
ζ

|dz|∣∣∣√z2− 8
3

∣∣∣∣∣z2− 2
3

∣∣2 + Ct
∫ ∞
λ

|dz|∣∣∣√z2− 8
3

∣∣∣∣∣z2− 2
3

∣∣2 6 C1

t
1
2+δ

∀λ, ζ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.53)

Formulae (4.51)–(4.53) imply the following proposition.

Proposition 4.2.The function (see (4.31)),

e
∫ λ
ζ
η(z) dz

satisfies the uniform estimate,

|e
∫ λ
ζ
η(z) dz| 6 C

∣∣∣∣λζ
∣∣∣∣1/2

∀λ, ζ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.54)

Let K denote the integral operator on the r.h.s. of equation (4.31). In virtue of the
property (4.32) of the canonical path and estimates (4.45), (4.54), theC(Dδ)-norm ofK
satisfies the inequality,

‖K‖C(Dδ) 6 C |λ|
t |λ2− 2

3|2
6 1

2

∀λ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.55)

This means that integral equation (4.31) is uniquely solvable in the Banach space of
holomorphic and bounded inDδ functions and that its solutionχ(λ) satisfies the uniform
estimate

‖χ(λ)− I‖ 6 C |λ|
t |λ2− 2

3|2
6 C1

t2δ|λ|3 .

∀λ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.56)

Along with the matrixT (λ) (see (4.25)), let us consider the matrix

T0 =
(

1 1
h0

1 h0
2

)
(4.57)

where

h0
1 =

µ− a3

a+
h0

2 = −
µ+ a3

a+
.

Since

T −1
0 (λ)T (λ) =

 1− 1
2t · a+4µ2

(
µ−a3

a+

)′
− 1

2t · a+4µ2

(
µ+a3

a+

)′
1
2t · a+4µ2

(
µ−a3

a+

)′
1+ 1

2t · a+4µ2

(
µ+a3

a+

)′

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we can use inequalities (4.40), (4.42) again and conclude that

‖T −1
0 (λ)T (λ)− I‖ 6 C |λ|

t |λ2− 2
3|2
6 C1

t2δ|λ|3
∀λ ∈ Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.58)

Equations (4.24) and (4.30) together with estimates (4.56) and (4.58) lead to the
following basic lemma.

WKB lemma. Let Dδ± be the canonical domains defined by equations (4.33) and (4.34).
Then in each region,D±, there exists a WKB-solution,8WKB

± (λ) of system (4.13), which
admits the following representation:

8WKB
± (λ) = T0(λ)Y

WKB
± (λ) = T0(λ)χ±(λ)e

2t
∫ λ
λ
±
0
3(z) dz

. (4.59)

The matrix functionsT0(λ) and 3(λ) are given by explicit formulae (4.57) and (4.28)
respectively. Matrix functionsχ+(λ) andχ−(λ) are holomorphic inDδ+ andDδ− respectively
and satisfy the uniform estimates,

‖χ±(λ)− I‖ 6 C

t2δ|λ|3
∀λ ∈ Dδ± ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.60)

In (4.60), positive constantC depends only ons∗− andε:

C = C(s∗−; ε)
positive constantt1 depends only ons∗−, ε, andδ:

t1 = t1(s∗−; ε; δ).

Step 2. The local solution near the double turning point.We consider the neighbourhood

of the double turning point
√

2
3:

U =
{
λ :

∣∣∣∣λ−√ 2
3

∣∣∣∣ 6 2t−
1
2+δ
}

0< δ < 1
2. (4.61)

To construct the local asymptotic solution in the area (4.61) it is convenient to make the
gauge transformation

8(λ) = VZ(λ) V =
(

1 1√
3
2ei π6 −

√
3
2e−i π6

)
. (4.62)

The functionZ(λ) satisfies the equation
∂Z

∂λ
= 2tÂZ Â = â3σ3+ â+σ+ + â−σ− (4.63)

where

â3 = 1√
2

{
−i

√
2

3
a3+ a+ + 2

3
a−

}

â+ = e−i π6
1√
2

{
2

√
2

3
a3− e−i π6 a+ + 2

3
ei π6 a−

}

â− = ei π6
1√
2

{
2

√
2

3
a3+ ei π6 a+ − 2

3
e−i π6 a−

} (4.64)
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and we recall (cf (4.13)) that

a3 = 1

2
λ3+ λ(r − 1)+ α

2tλ

a+ = ir

(
λ2− 1+ r

2
+ β

4tr
−
(
r ′

2r
+ 1

4t

))
a− = i

(
λ2− 1+ r

2
+ β

4tr
+
(
r ′

2r
+ 1

4t

))
.

In the area (4.61), due to (4.15), the matrix (4.63) can be represented in the form

Â(λ) = B0(λ)+ R0(λ) (4.65)

where

B0(λ) = i
2√
3

(
λ−

√
2

3

)
σ3+ a

√
2

t
e−i π6−i2σ+

+a
√

2

t
ei π6+i2σ− ≡ b3σ3+ b+σ+ + b−σ− b− = b̄+ (4.66)

while for the matrixR0(λ) the following inequality holds:

‖R0(λ)‖ 6 t−1+2δC

∀s ∈ D(s∗−; ε) ∀t > t0(s
∗
−; ε)

∀λ :

∣∣∣∣λ−√ 2
3

∣∣∣∣ 6 2t−
1
2+δ 0< δ < 1

2.

(4.67)

The model equation

dZ0

dλ
= 2tB0Z0 (4.68)

is exactly solvable in terms of the Weber–Hermite functionsDν(z) (see [27]):

Z0(λ) =
(
D−ν−1(iz) Dν(z)

Ḋ−ν−1(iz) Ḋν(z)

)
(4.69)

where

z = ei π4
2
√

2t
4
√

3

(
λ−

√
2

3

)

ν + 1= i

√
3

2
tb+b− = i

√
3a2

(4.70)

Ḋ = 1

b0

(
dD

dz
− z

2
D

)
b0 = 4

√
3ae−i 5π

12−i2. (4.71)

The local solution of equation (4.63) can be defined now as the product (cf (4.30)),

Z(λ) = χ0(λ)Z0(λ) (4.72)

where the matrix functionχ0(λ) satifies the integral equation

χ0(λ) = I + 2t
∫ λ

√
2/3
Z0(λ)Z

−1
0 (ζ )R(ζ )χ0(ζ )Z0(ζ )Z

−1
0 (λ) dζ. (4.73)

This is a Volterra equation with the regular kernel. As it follows from the known (see e.g.
[27]) integral representations and asymptotic expansions for the parabolic cylinder functions,
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the functionsD−ν−1(z(λ)), Dν(z(λ)), and their derivatives are bounded uniformly with
respect tos− ∈ D(s∗−; ε), if

λ ∈ S = {λ ∈ U : |Rez2(λ)| 6 1}. (4.74)

This yields immediately the following estimate in the star-shaped region defined in (4.74):

‖Z0(λ)Z
−1
0 (ζ )‖ 6 C ∀s− ∈ D(s∗−; ε) z, ζ ∈ S. (4.75)

The Volterra equation (4.73) has a unique solutionχ0(λ), which is analytic in the whole
neighbourhoodU and satisfies there the estimate,

‖χ0(λ)− I‖ 6 eσ(λ) − 1 (4.76)

where

σ(λ) = 2t
∫ λ

√
2/3
‖Z0(λ)Z

−1
0 (ζ )‖ · ‖R(ζ )‖ · ‖Z0(ζ )Z

−1
0 (λ)‖|dζ |

and the integration is performing along the radius of the diskU . Because of (4.67) and
(4.75), in the star-shaped regionS the inequality,

σ(λ) 6 2t−
1
2+3δC

holds. This leads to the following lemma.

Turning point lemma. Let U and S be the disk and the star-shaped region defined by
equations (4.61) and (4.74), respectively. Then in the diskU , there exists a turning point
solution,8TP(λ), of system (4.13), which admits the following representation:

8TP(λ) = VZ(λ) = V χ0(λ)Z0(λ). (4.77)

Matrix V and the matrix functionZ0(λ) are given by explicit formulae (4.62) and (4.69),
respectively. Matrix functionχ0(λ) is holomorphic inU and satisfies the uniform estimate,

‖χ0(λ)− I‖ 6 t− 1
2+3δC 0< δ < 1

6

∀s ∈ D(s∗−; ε) ∀λ ∈ S t > t0
(4.78)

in the star-shaped regionS. In (4.78), the positive constantsC and t0 depend only ons∗−
andε:

C = C(s∗−; ε) t0 = t (s∗−; ε).

Step 3. Calculation of the matricesC±. Let us consider the matrix

C+ = [8WKB
+ (λ)]−192(ξ(λ)) = [T0(λ)Y

WKB
+ (λ)]−192(ξ(λ)). (4.79)

The matricesC± a priori do not depend onλ. In particular, this means that when
evaluatingC+ we can use the equation,

C+ = lim
λ→∞
λ∈D+
{[T0(λ)Y

WKB
+ (λ)]−192(ξ(λ))}. (4.80)

Taking into account the fact that in the domainD+,

µ(λ) ∼ 1
2λ

3− λ λ→∞ (4.81)
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we derive from (4.57) the asymptotic equation,

T −1
0 (λ) =

(
1 0
0 − ir

λ

){
I +O

(
1

λ

)}
λ→∞ λ ∈ D+.

(4.82)

Equation (4.82) together with the equation,

YWKB
+ (λ) = χ+(λ)e2t

∫ λ
λ
+
0
3(z) dz

and estimate (4.60) imply the following explicit formula for the matrixC+:

C+ =
√
a+
µ

∣∣∣∣
λ+0

lim
λ→∞
λ∈D+

{√
µ

a+

∣∣∣∣
λ

exp

(
− 2t

∫ λ

λ+0

33 dλ σ3+
(

1

8
ξ4+ x

2
ξ2+ (α − β) ln ξ

)
σ3

)

×
(

1
− ir
λ

)}
(4.83)

where the notation33 is used for theσ3-component of the diagonal matrix3 (see 4.28):

33 = µ+ 1

4tµ

(
a′3− a3

a′+
a+

)
.

Similarly,

C− = [8WKB
− (λ)]−19−1(ξ(λ)) (4.84)

=
√
a+
µ

∣∣∣∣
λ−0

lim
λ→∞
λ∈D−

{√
µ

a+

∣∣∣∣
λ

exp

(
− 2t

∫ λ

λ−0

33 dλ σ3

−
(

1

8
ξ4+ x

2
ξ2+ (α − β) ln ξ

)
σ3

)(− ir
λ

1

)}
σ1 (4.85)

where we have taken into account the fact that in the domainD− estimates (4.81) and (4.82)
should be replaced by the estimates

µ(λ) ∼ − 1
2λ

3+ λ ξ →∞ (4.86)

and

T −1
0 (λ) =

(− ir
λ

0
0 1

)
σ1

{
I +O

(
1

λ

)}
(4.87)

respectively.
Equations (4.83) and (4.84) in turn can be used for evaluation the asymptotics of the

matricesC± as t →∞. Indeed,

2t
∫ λ

λ0

33 dλ = 2t (g(λ)− g(λ0))+ I (λ, λ0) (4.88)

where the functiong(λ) is given by the equation,

g(λ) = 1

8
λ

(
λ2− 8

3

)3/2

+ 1

2t


(
α − β + 1

2

)
ln

(
λ+

√
λ2− 8

3

)

− i
√

3a2 ln


(
λ+

√
λ2− 8

3

)2
− 2

3(1+ i
√

3)2(
λ+

√
λ2− 8

3

)2
− 2

3(1− i
√

3)2


 (4.89)
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and the remainderI (λ, λ0) satisfies the following uniform estimate:

|I (λ, λ0)| 6 t−δC
∀(λ, λ0) ∈ Dδ ×Dδ ∀s− ∈ D(s∗−; ε) ∀t > t1.

(4.90)

In (4.89), the function
√
λ2− 8

3 is understood as a single-valued analytic function on

C\(−∞,−
√

8
3]∪ [

√
8
3,+∞) which has the asymptotics,

√
λ2− 8

3 ∼ λ, asλ→ i∞ (cf with
the definition ofµ(λ)). The branches of the rest of the involved multivalued functions are
fixed by the conditions,

0< arg

[
λ+

√
λ2− 8

3

]
< π λ ∈ D± (4.91)

0< arg

[(
λ+

√
λ2− 8

3

)2

− 2
3(1+ i

√
3)2
]
< π λ ∈ Dδ+ (4.92)

− π < arg

[(
λ+

√
λ2− 8

3

)2

− 2
3(1+ i

√
3)2
]
< 0 λ ∈ Dδ− (4.93)

0< arg

[(
λ+

√
λ2− 8

3

)2

− 2
3(1− i

√
3)2
]
< π λ ∈ Dδ±. (4.94)

From equation (4.89) and conditions (4.91)–(4.94) it follows that

g(λ) = λ4

8
− λ

2
+ 1

3
+ 1

2t

(
α − β + 1

2

)
ln 2λ+O(λ−2) 0< argλ <

π

2
(4.95)

asλ→∞ λ ∈ D+, and

g(λ) = −λ
4

8
+ λ

2
− 1

3
− 1

2t

(
α − β + 1

2

)
ln

3λ

4

− π

t
√

3
a2+O(λ−2) − π

2
< argλ < 0 (4.96)

asλ → ∞, λ ∈ D−. Taking into account also the uniform with respect tos− ∈ D(s∗−; ε)
and t > t1(s

∗
−; ε; δ) estimates (see (4.37), (4.38)),√

µ

a+
=
√

3λ

2
e−

iπ
4

[
1+O

(
1

λ2
+ 1

t δ

)]
0< argλ <

π

2
(4.97)

asλ→∞, λ ∈ Dδ+, and√
µ

a+
=
√

3λ

2
e

iπ
4

[
1+O

(
1

λ2
+ 1

t δ

)]
− π

2
< argλ < 0 (4.98)

asλ → ∞, λ ∈ Dδ−, we end up with the following asymptotic equations for the matrices
C±:

C+ =
√
a+
µ

∣∣∣∣
λ+0

{I + c+(t)}e(2tg(λ+0 )− 2t
3 + α−β

4 ln 2t+ω+)σ3
σ3√

2
(4.99)

C− =
√
a+
µ

∣∣∣∣
λ−0

{I + c−(t)}e(2tg(λ−0 )+ 2t
3 − α−β

4 ln 2t+ω−)σ3
σ1√

2
(4.100)
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where

ω+ = − iπ

4
− 1

2
ln

2

3
−
(
α − β + 1

2

)
ln 2

ω− = − iπ

4
+ 1

2
ln

2

3
+
(
α − β + 1

2

)
ln

3

4
+ 2π√

3
a2

(4.101)

and the matrix functionsc±(t) are diagonal and satisfy the uniform estimate,

|c+| < C

tδ

t > t1 s ∈ D(s∗−; ε) λ±0 ∈ Dδ±.

Step 4. Calculation of the matricesN±. The connection matricesN± are defined by
equations (cf (4.20)),

N± = [8TP(λ)]−18WKB
± (λ) =

√
µ

a+

∣∣∣∣
λ±0

√
a+
µ

∣∣∣∣
λ

Z−1
0 (λ)χ−1

0 (λ)V −1T0(λ)χ±(λ)e
2t
∫ λ
λ
±
0
33 dλσ3

.

(4.102)

Similar toC±, the matricesN± do not depend onλ. This means that when evaluating
N± we may assume that

λ ∈ P± ≡ Dδ± ∩ S 0< δ < 1
6. (4.103)

The obvious advantage of this choice is that in the matching area (4.103) both the functions,
χ0(λ) andχ±(λ), are asymptotically close to the unit matrix ast →∞.

It follows from the definitions of the matricesV andT0(λ) (see (4.62) and (4.57)) and
from estimates (4.37) and (4.38) that

‖V −1T0(λ)− I‖ 6 t−δC ∀λ ∈ P± ∀s− ∈ D(s∗−; ε) t > t1. (4.104)

On the other hand, ifz is the variable defined in (4.70), then in the regions (4.103) we have
that

|z| → ∞ and argz→


3π

4
for λ ∈ P+

−π
4

for λ ∈ P−
(4.105)

as t → ∞. Therefore, in (4.69) we can use the known largez asymptotic expansions of
the parabolic cylinder functions (see e.g. [27]). This yields the equation,

Z−1
0 (λ) = G−1

±

(
1
−b0

)
e−(

z2

4 −(ν+1) ln z)σ3Ẑ±(λ) λ ∈ P± (4.106)

where

‖Ẑ±(λ)− I‖ 6 t−δC ∀λ ∈ P± ∀s− ∈ D(s∗−; ε) t > t1

and

G+ =
(

ei 3π
2 (ν+1)

√
2π

0(−ν)e
iπ(ν+1)

√
2π

0(ν+1)e
−i π2 ν 1

)

G− =
(

e−i π2 (ν+1) 0
0 1

)
.

(4.107)
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The parametersν andb0 are defined in (4.70) and (4.71).
In the matching domainsP± the functiong(λ) (see (4.88), (4.89)) admits the following,

uniform with respect tos− ∈ D(s∗−; ε) and t > t1, asymptotic representation:

2tg(λ) = z2

4
− (ν + 1) ln z− it√

3
+ ν + 1

2
ln t + q +O(t− 1

2+3δ)

λ ∈ P± t →∞
(4.108)

where

q = (ν + 1) ln 2 4
√

3+ (ν + 1)
7iπ

12
+ 1

2

(
α − β + 1

2

)
ln

8

3
+
(
α − β + 1

2

)
iπ

3
(4.109)

and the variablez and the pure imaginary parameterν are the same as in (4.69). It should
be emphasized that in both equations (4.106) and (4.108) the branch of lnz is determined
by the same rule (4.105).

Simultaneously, from (4.37), (4.38) it follows that√
a+
µ
= 2

1
4

√
2

3
+O

(
1

t δ

)
(4.110)

as t →∞ uniformly with respect toλ ∈ P±, s− ∈ D(s∗−; ε) and t > t1.
Consider the domainP+ and assume that

λ, λ+0 ∈ P+.
In virtue of equation (4.108) and the characteristic property (4.74) of the setS, the
exponential term in (4.102), i.e. the matrix,

e
2t
∫ λ
λ
+
0
33 dλσ3

is uniformly bounded and does not affect the power-like error terms in all the other objects
involved in equation (4.102). Hence the asymptotic formulae (4.104), (4.106), (4.108), and
(4.110) together with the estimates (4.78), (4.60) for the functionsχ0(λ), χ+(λ) produce
the following asymptotic equation for the connection matrixN+:

N+ = G−1
+

(
1
−b0

)
e(−2tg(λ+0 )− it√

3
+ ν+1

2 ln t+q)σ3{I + n+(t)} (4.111)

where the matrix functionn+(t) satisfies the uniform estimate,

|n+| < C

tδ
δ = max

δ̃∈(0,1/6)
min{δ̃; 1

2 − 3δ̃} = 1
8

t > t0 s ∈ D(s∗−; ε) λ+0 ∈ P+.
Similar arguments, based on the restriction,

λ, λ−0 ∈ P−
yield the similar equation for matrixN−,

N− = G−1
−

(
1
−b0

)
e(−2tg(λ−0 )− it√

3
+ ν+1

2 ln t+q)σ3{I + n−(t)}

|n−| < t−
1
8C

t > t0 s ∈ D(s∗−; ε) λ−0 ∈ P−.

(4.112)
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Step 5. Calculation of the monodromy matrices. The completion of the proof of theorem 4.1.
We are now ready to calculate the product of the Stokes matrices indicated in (4.21). In fact,
substituting the asymptotic formulae (4.99), (4.100), (4.111), and (4.112) for the matrices
C±, N± into equation (4.21), we obtain that

Ŝ−1Ŝ0Ŝ1 = C−1
− N

−1
− N+C+ = σ1eF−σ3

(
1
−b−1

0

)
G−G−1

+

(
1

b0

)
{I + n(t)} eF+σ3

= σ1eF−σ3

(
1 −b0

√
2π

0(−ν)e
iπ(ν+1)

i
b0

√
2π

0(ν+1) −e2π i(ν+1)

)
{I + n(t)}eF+σ3 (4.113)

where

F− = it√
3
− ν + 1

2
ln t − q − 2t

3
+ α − β

4
ln 2t − ω−

F+ = − it√
3
+ ν + 1

2
ln t + q − 2t

3
+ α − β

4
ln 2t + ω+

and the matrixn(t) satisfies the uniform estimate,

|n| < t−
1
8C

t > t0 s ∈ D(s∗−; ε).
In obtaining (4.113) we also took into account the fact thatλ±0 ∈ P±, and hence√

µ

a+

∣∣∣∣
λ−0

√
a+
µ

∣∣∣∣
λ+0

= 1+O
(

1

t δ

)
,

because of (4.110).
Recalling the definitions of the parametersb0, ν (see (4.70), (4.71)) andω±, q (see

(4.101), (4.109)), equation (4.113) can be rewritten in the folowing form:

Ŝ−1Ŝ0Ŝ1 = σ1ei4σ3+5σ3

(
1 − i

4√3a
e−i 5π

12−i2
√

2π
0(−i
√

3a2)
e−π
√

3a2

i
4√3a

ei 5π
12+i2

√
2π

0(i
√

3a2)
−e−2π

√
3a2

)
×{I + n(t)}e−i4σ3+5σ3−

√
3

2 πa
2σ3 (4.114)

where

4 = t√
3
−
√

3

2
a2 ln t −

√
3a2 ln 2 4

√
3− π

3

(
α − β − 1

4

)
(4.115)

5 = −2t

3
+ α − β

4
ln 2t −

√
3

12
πa2+ 1

2

(
α − β − 1

2

)
ln

2

3
(4.116)

and the matrix functionn(t) satisfies the uniform estimate,

|n| < t−
1
8C

t > t0 s− ∈ D(s∗−; ε).
The object of our prime interest, i.e. the monodromy parameterŝ−, is given by the 22

entry of the matrix product̂S−1Ŝ0Ŝ1 (see (4.22)). From (4.114) we find that

ŝ− = − i
4
√

3a
e2i4−i 5π

12−i2

√
2π

0(−i
√

3a2)
e−

√
3

2 πa
2 + c(t)

|c| < t−
1
8C

t > t0 s− ∈ D(s∗−; ε).

(4.117)
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To complete the proof of theorem 4.1 we only need to notice that, in virtue of the identity,

1

|0(iτ)| = −
iτ sinπ iτ

π
τ ∈ R

the equation,

− i
4
√

3a
e2i4−i 5π

12−i2

√
2π

0(−i
√

3a2)
e−

√
3

2 πa
2 = s− (4.118)

is equivalent to the exact formulae (4.9), (4.10) for the functionsa = a(s−) and
2 = 2(x, s−) suggested in the theorem. One also has to remember thatx = −√2t .

The proof of theorem 4.1 is completed. �

Remark 4.2.Suppose that instead of exact equations (4.8), the functionsw(x) andw′(x)
satisfy, asx →−∞, the asymptotic equations,

w = −2x

3
+ 2
√

2a cos2+O
(

1

x

)
w′ = dw(x)

dx

d

dx
O
(

1

x

)
= O(1) (4.119)

where as before

a2 = − 1

2
√

3π
ln(1− |s−|2) a > 0 (4.120)

2 = x2

√
3
−
√

3a2 ln(2
√

3x2)+ φ (4.121)

φ = −3π

4
− 2π

3
(α − β)− arg0(−i

√
3a2)− args−.

Then all the estimates we made during the proof of theorem 4.1 would be still valid, provided
of course that we are no longer interested in making them uniform with respect tos−. In
particular, we would end up with the equation (cf (4.117)),

ŝ− = − i
4
√

3a
e2i4−i 5π

12−i2

√
2π

0(−i
√

3a2)
e−

√
3

2 πa
2 +O(t− 1

8 ) ≡ s− +O(t− 1
8 ). (4.122)

Observe now that formulae (4.120) and (4.121) establish a one-to-one correspondence
between the real pairs(φ, a), a > 0, φ ∈ R mod 2π and the complex numberss−, 0 <
|s−| < 1. Hence we arrive at the following result.

Corollary 4.1. Let α, β, φ anda be the real numbers such thata > 0 andα − 1
2 /∈ Z (the

only restrictions). Suppose that the PIV equation (1.1) has a real solutionw(x) satisfying
asymptotic condition (4.119) asx →−∞. Then this solution is unique, i.e.

w(x) ≡ w(x; a, φ)
and the corresponding monodromy parameters− is given by the equations,

|s−|2 = 1− e−2
√

3πa2
(4.123)

and

args− = −3π

4
− 2π

3
(α − β)− arg0(−i

√
3a2)− φ. (4.124)

Equations (4.123) and (4.124) are valid without any restrictions on the parameterα.
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5. Solution of the inverse monodromy problem:x→−∞

In this section, we prove the following theorem.

Theorem 5.1.Suppose that the monodromy set (2.20) related to system (4.2) satisfies the
conditions,

β, α ∈ R α − 1
2 /∈ Z

s−1s0 = s1s0 0< |s−| < 1 s− ≡ 1+ s1s0.
Then for sufficiently large negativex, the inverse monodromy problem for system (4.2)
posed as the problem,

s− 7→ {w,w′} (5.1)

is uniquely solvable, and the corresponding solutionw(x) of the PIV equation (1.1) is real
(for real x) and possesses the following asymptotic behaviour asx →−∞:

w(x) = ŵ(x, s−)+O((−x)− 1
4 ln(−x)). (5.2)

In (5.2),ŵ(x, s−) denotes the explicit function introduced in theorem 4.1 by equations (4.8)–
(4.10).

Proof of theorem 5.1.Let us first prove the easy part of the statement, i.e. the reality of
w(x) and the uniqueness of the solution of the inverse problem (5.1).

The reality ofw(x) follows (cf (2.23), (2.24)) from the following lemma.

Lemma 5.1.Let
d9(ξ)

dξ
= A(ξ)9(ξ) (5.3)

be the equation from subclass (4.2) such that for its monodromy data the condition

|s−| 6= 1 (5.4)

holds. Assume also thatx < 0. Then the following three statements are equivalent.
(i) The Stokes multiplierss±1, s0 satisfy the equations,

s̄0 = s0 s̄−1 = s1.
(ii) The Stokes multiplierss±1, s0 satisfy the equation,

s−1s0 = s1s0.
(iii) The functionsw(x), w′(x) are real.

Proof of lemma 5.1.The implication,(i)⇒ (ii), is trivial. The implication(iii )⇒ (i) has
been, in fact, proven in section 2 (see (2.21) and (2.22)). Hence, it is enough just to prove
the implication,

(ii)⇒ (iii ).

From the equation,

s−1s0 = s1s0
we derive the following representations for the multiplierss±1, s0:

s0 = |s0|eiδ0 s1 = |s1|eiδ1 s−1 = |s1|e−iδ1−2iδ0 (5.5)
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(s1s0 6= 0, since|s−| 6= 1). This in turn implies that

S0 = e−iδ0σ3σ3S̄
−1
0 σ3eiδ0σ3 and S1 = e−iδ0σ3σ3S̄

−1
−1σ3eiδ0σ3. (5.6)

Set

Ã(ξ) = e−iδ0σ3σ3Ā(ξ̄ )σ3eiδ0σ3 (5.7)

and consider the system

d9̃(ξ)

dξ
= Ã(ξ)9̃(ξ). (5.8)

Denoting9k(ξ) and 9̃k(ξ) the canonical solutions corresponding to equations (5.3) and
(5.8), respectively, we have that

9̃k̃(k)(ξ) = e−iδ0σ3σ39̄k(ξ̄ )σ3eiδ0σ3 argξ̄ = −argξ k = −1, 0, 1, 2

k̃(−1) = 2 k̃(0) = 1 k̃(1) = 0 k̃(2) = −1.

This together with (5.6) yield the relations,

S̃k = Sk k = −1, 0, 1. (5.9)

From (ii) and (5.4) it follows that

s1+ s−1+ s1s−1s0 = |s−|
2− 1

s0
6= 0.

Therefore the generic condition (2.18) is satisfied, and hence the Stokes matricesS±1, S0

determine uniquely the rest of the monodromy data of equation (5.3). Because of (5.9), the
same is true for equation (5.8). Moreover, from (5.9) it follows that both the systems have
the same set of the monodromy data. This means that the matrix ratio,

F(ξ) ≡ 9̃0(ξ)9
−1
0 (ξ)

is an entire function which has the asymptotics,

F(ξ)→ I ξ →∞
in the whole neighbourhood ofξ = ∞. Therefore,

F(ξ) = I ∀ξ
and we end up with the identity,

9̃0(ξ) ≡ 90(ξ)

which is followed by the equation,

Ã(ξ) = A(ξ) ∀ξ ∈ C. (5.10)

From (5.10) we conclude that the matrixA(ξ) must satisfy the symmetry equation,

A(ξ) = e−iδ0σ3σ3Ā(ξ̄ )σ3eiδ0σ3 ∀ξ (5.11)

whoseξ2 term in the 21 component implies that

1= e2iδ0. (5.12)

This equation in view of (5.11) yields the reality ofw,w′, i.e. the statement (iii). Also,
from (5.5) and (5.12) it follows directly that̄s0 = s0 and s̄−1 = s1, i.e. the statement (i).
The proof of the lemma is completed. �
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The uniqueness of the solution of the inverse monodromy problem for system (4.2) in
the setting,

s− 7→ {w,w′}
follows from the following proposition

Proposition 5.1.For real{w,w′} and under the condition,|s−| 6= 1, the monodromy map
for system (4.2), i.e. the map,

{w,w′} 7→ s−

is one-to-one.

Proof of proposition 5.1.Givenα, β ∈ R, α − 1
2 /∈ Z consider two systems,

d9(ξ)

dξ
= A(ξ)9(ξ) and

d9̃(ξ)

dξ
= Ã(ξ)9̃(ξ)

from subclass (4.2) with the real{w,w′} and {w̃, w̃′}, respectively, whose monodromy
parameters,s− and s̃−, coincide,

s− = s̃− |s−| 6= 1. (5.13)

Let {Sk, E}, 9k(ξ) and{S̃k, Ẽ}, 9̃k(ξ) be the monodromy data and the canonical solutions
corresponding to each of the two systems, respectively. Because of equations (5.13), the
Stokes matricesS1,0 and S̃1,0 are related by the similarity transformation,

S̃k = eκσ3Ske
−κσ3 k = 0, 1 (5.14)

with some parameterκ. Due to the reality ofw,w′, w̃, andw̃′,

s̄0 = s0 ¯̃s0 = s̃0 s̄1 = s−1
¯̃s1 = s̃−1

so that the number e2κ must be real and equation (5.14) must be true fork = −1 as well.
Arguing as in the proof of lemma 5.1, we conclude that the two systems with the coefficient
matrices,

Ã(ξ) and eκσ3A(ξ)e−κσ3

respectively, have the same set of the monodromy data, and hence the relation,

Ã(ξ) = eκσ3A(ξ)e−κσ3 ∀ξ
is present. Considering again theξ2 term in the 21 component of the last equation, we
obtain that

e−2κ = 1

and therefore,

Ã(ξ) = A(ξ) ∀ξ
or

{w,w′} = {w̃, w̃′}
which completes the proof of proposition 5.1. �

To prove the most interesting part of the statement, i.e. the existence of the solution of
the inverse monodromy problem (5.1) and the asymptotics (5.2), we shall use theorem 4.1
and Kitaev’s method [11].
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Let s∗− be the complex number satisfying the inequality,

0< |s∗−| < 1

and letD(s∗−; ε) be the closed disk,

D(s∗−; ε) = {s− ∈ C : |s− − s∗−| 6 ε} 0< ε < min{1− |s∗−|, |s∗−|} (5.15)

as in theorem 2 (cf (4.7)). Takings− ∈ D(s∗−; ε), we consider the coefficient functions
ŵ(x, s−), ŵ′(x, s−), and the corresponding monodromy dataŝ−(x, s−). From the general
theory of systems of ODEs with rational coefficients (see e.g. [16]) it follows that the
canonical solutions9k of system (4.2) are smooth functions ofx, ŵ, ŵ′. This implies that
ŝ−(x, s−) is a continuous function on(−∞;−1]×D(s∗−; ε).

Let us introduce the functiong(x, s−) by

ŝ−(x, s−) = s− + g(x, s−). (5.16)

The continuity of the function̂s− and theorem 4.1 imply that:
(1) the functiong(x, s−) is continuous on(−∞;−1]×D(s∗−; ε),
(2) there exist the constantsC = C(s∗−; ε) > 0 andx0 = x0(s

∗
−; ε) < −1 such that

|g(x, s−)| 6 (−x)− 1
4C ∀x < x0 ∀s− ∈ D(s∗−; ε). (5.17)

Now let us consider the equation,

s− + g(x, s−) = s∗− s− ∈ D(s∗−; ε). (5.18)

Introducing the variableτ = s∗− − s− and the functiong̃(x, τ ) ≡ g(x, s∗− − τ), one can
rewrite equation (5.18) as

g̃(x, τ ) = τ τ ∈ D(0; ε) ≡ {τ : |τ | 6 ε}. (5.19)

Picking anyx < x1, x1 = −max{(−x0); (C/ε)4}, we conclude that the functioñg(x, ·) is a
continuous function from the compact diskD(0; ε) into itself. Thus the Brouwer fixed point
theorem implies that for eachx 6 x1, there exists at least one solution of the equation (5.18).

One can see that the solution of (5.18) is unique forx < min{x1; x2}, where

x2 = −3
√

2

(
− 1

2
√

3π
ln(1− (|s∗−| + ε)2)

)1/2

< 0.

Indeed, letx < x1 and suppose that there are two complex numberss−, s̃− satisfying (5.18).
Consider the pairs{ŵ(x, s−), ŵ′(x, s−)} and {ŵ(x, s̃−), ŵ′(x, s̃−)}. For the corresponding
monodromy datâs−(x, s−) and ŝ−(x, s̃−) we have

ŝ−(x, s−) = s− + g(x, s−) = s∗− ŝ−(x, s̃−) = s̃− + g(x, s̃−) = s∗−
so thatŝ−(x, s−) = ŝ−(x, s̃−). Due to proposition 5.1, we obtain that

ŵ(x, s−) = ŵ(x, s̃−) ŵ′(x, s−) = ŵ′(x, s̃−)
or

a cos2(x) = ã cos2̃(x)

a

(
1− 3a2

x2

)
sin2(x) = ã

(
1− 3ã2

x2

)
sin2̃(x).

In terms of the new complex variablesZ = aei2, Z̃ = ãei2̃, these equations become

Z − 3i

x2
|Z|2ImZ = Z̃ − 3i

x2
|Z̃|2Im Z̃.
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This yields the following inequality:

|Z − Z̃| 6 9C0

x2
|Z − Z̃|

whereC0 is defined by

C0 = max
s−∈D(s∗−;ε)

a2 6 − 1

2
√

3π
ln(1− (|s∗−| + ε)2) ≡

1

18
x2

2.

If x 6 x2 < 0, we conclude thatZ = Z̃, i.e. a = ã and2 = 2̃ (mod 2π), and therefore
s− = s̃−.

Assuming that

x < x3 ≡ min{x1; x2}
we will denote the unique solution of (5.18) ass−(x; s∗−). This function:

(a) is defined forx < x3;
(b) for all x < x3 satisfies the equation

s−(x, s∗−)+ g(x, s−(x, s∗−)) = s∗− s−(x, s∗−) ∈ D(s∗−; ε)
(c) for all x < x3 satisfies the inequality

|s−(x, s∗−)− s∗−| 6 x−
1
4C(s∗−; ε) < ε.

Now, the last step of the proof. Let us define

w̃(x, s∗−) = ŵ(x, s−(x, s∗−)) w̃′(x, s∗−) =
∂

∂x
ŵ(x, s−)|s−=s−(x,s∗−) x < x3.

Taking these functions as the coefficients in the system (4.2), we find that the corresponding
monodromy data satisfies the equation

s̃− = ŝ−(x, s−(x, s∗−)) = s(x, s∗−)+ g(x, s−(x, s∗−)) ≡ s∗−
for all x < x3 and hence does not depend onx. This means that:

(i) for any x < x3, the pair{w̃(x, s∗−), w̃′(x, s∗−)} is a solution of the inverse monodromy
problem (5.1) corresponding to the monodromy datas∗−;

(ii) the functionw̃(x, s∗−) coincides with the solutionw(x, s∗−) of the PIV equation (1.1)
corresponding to the monodromy parameters∗−.

This implies the equation

w(x, s∗−) = ŵ(x, s−(x, s∗−)) x < x3(s
∗
−; ε)

∀s∗− : 0< |s∗−| < 1 and 0< ε < min{1− |s∗−|, |s∗−|}
(5.20)

which completes the proof of theorem 5.1. In fact, it remains to use estimate (c) for function
s−(x, s∗−) and the smoothness of the functionsa = a(Res−, Im s−), φ = φ(Res−, Im s−)
for s− ∈ D(s∗−; ε). �

Remark 5.1.It has already been noticed (see remark 4.1) that the map,

0< |s−| < 1 s− 7→ (φ, a) a > 0 φ ∈ R mod 2π

given by the equations,

a2 = − 1

2
√

3π
ln
(
1− |s−|2

)
a > 0 (5.21)

φ = −3π

4
− 2π

3
(α − β)− arg0(−i

√
3a2)− args− (5.22)

is a bijection. This fact, theorem 5.1, and corollary 4.1 imply the local asymptotic result
formulated in theorem 1.2.
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6. Proof of theorem 1.1. Connection formulae.

Let the parametersα, β, andk2 satisfy the conditions of theorem 1.1, and letw(x; k2) denote
the Clarkson–McLeod solution of the PIV equation (1.1) characterized by the boundary
condition (1.3) asx → +∞. Assume also that in theorem 3.1 the monodromy data are
chosen so that the equations,

s̄0 = s0 s̄1 = s−1

s1s0 = −2(2π)3/2e−iπα

0( 1
2 − α)

k2

take place. We note that this, in particular, implies that

0 6= s1s0eiπα ∈ R
and hence (cf (2.26), (2.27)),

s2 = s1+ s3 = 0.

Taking into account the uniqueness of the solutionw(x; k2) and comparing the
asymptotics (1.3) and (3.1), we conclude that the Painlevé transcendentw(x; k2) is real
for real x and the direct monodromy map,

w(x; k2) 7→ s−(k2)

is given by the explicit formula,

s−(k2) = 1− 2(2π)3/2e−iπα

0( 1
2 − α)

k2. (6.1)

To complete the proof of theorem 1.1 we only need to refer to theorem 5.1 noticing that
inequality (1.9) is equivalent to the inequality,

0< |s−| < 1

if s− is given by (6.1).
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[18] Bassom A P, Clarkson P A and Hicks A C 1995 B̈acklund transformations and solution hierarchies for the

fourth Painlev́e equationStud. Appl. Math.95 1–71
[19] Fokas A S, Mugan U and Ablowitz M J 1988 A method of linearization for Painlevé equations: Painlevé
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p 51
[23] Zhou X 1989 Riemann–Hilbert problem and inverse scatteringSIAM J. Math. Anal.20 966–86
[24] Wascow W 1965Asymptotic Expansions for Ordinary Differential Equations(New York: Wiley–Interscience)
[25] Olver F W J 1974Asymptotics and Special Functions(New York: Academic)
[26] Fedorjuk M V 1983Asymptotic Methods for Linear Ordinary Differential Equations(Moscow: Nauka) (in

Russian)
[27] Bateman H and Erd́elyi A 1953 Higher Transcendental Functions(New York: McGraw-Hill)


