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Abstract. Using the isomonodromy and Riemann-Hilbert methods, we perform a rigorous
global asymptotic analysis of the Clarkson—McLeod fourth Paikeanscendent. In particular,

we prove some of the Clarkson—McLeod conjectures concerning the asymptotic behaviour, as
x — —oo, of the solutions of Painlé&/ IV equation which decay as — +o0o. The relevant

exact connection formulae are also rigorously derived.

1. Introduction

In this paper we consider solutions of the fourth Paial¢R1V) equation,

"2 3 2
w’ = W) +—w3+4xw2+(—4a+,3+2x2)w—'3— (1.1
2w 2 2w
satisfying (under the assumptiof,= 0) the boundary condition,
wx) — 0 asx — +o00. (1.2)

The study of this class of Painlewranscendents was initiated in the work of Clarkson and
McLeod [1] and has been continued by Bassom, Clarkson, Hicks and McLeod (BCHM) in
the subsequent series of papers (see [1-4]). In particular, in [3] it is proven that, in the case
B = 0 and reakr, any real solution of (1.1) satisfying boundary condition (1.2) is multiple

of the square of the parabolic cylinder functi@;},%(«/ix), ie.

w(x) ~ k22Y2D2 | (V2x) ~ k22 Lyl (1.3)

for some constamt? € R. Moreover, as it is also proven in [3], for arty, there exists a
unique solution of (1.1)4 = 0) asymptotic tak22%2D? | (v/2x).
=3

The one-parameter family (x; k%) of solutions of the PIV equation (1.1) determined
by asymptotic condition (1.3) was first introduced in [1]. We will refer to the function
w(x; k%) as toClarkson—-McLeod PIV transcendent

One of the principal questions relatedudx; k?) is its behaviour as — —oo. In [1]
it is conjectured that there exists the valde= k*(«) > O such that:

(1) if |k] < k* thenw(x) is smooth for all reak, and asx — —oo,

12 3 o g2
w(x) ~ k2202l = 2pnts y g o — % =neN 1.4
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or

2 2
w(x) = —% + (—1)[“+%1% sin (’“73 - % IN(—v/2x) 4+ ¢ + (’)(x_z))

+@<E> w—tgz (1.5)
X 2

where pr + %] denotes the integer part of + % and the constants,, d, ¢ are dependent
onk;
(2) if |k| = k* then asx — —o0
w(x) ~ —2x (1.6)
(3) if |k| > k* thenw(x) has a pole at some poinp = xo(k) € R.
In the casex — % =n € N, part (1) of this conjecture was proven in [1, 3] and the

following equations for the values af, andk* were obtained:
2

KR = ——

1 —12«/271n!k2 (L.7)
(k*)? = :

2/ 27 n!

In [1], it was also suggested that the following generalization of equation (1.7) for non-
integer values ofr — % takes place:

1 1
P = ————— <a +=> O) . 1.8
2V27T(a + 3) 2 (18)
(For some technical reason we use slightly different parametrization of the PIV equation
than the one used in [1-4]. #8°"™ and gB"M denotew, g-parameters in [3] then their
relation to oure, B is given by equations

BCHM p BCHM B?
o = 2 5 B =-7-

Equations (1.5) and (1.8) were thoroughly investigated and verified numerically in [4, 2].
The problem of their rigorous justification and the problem of evaluation of the exact
connection formulae for the asymptotic parametéfs) and c(k) were left open. In this
paper we address these two problems via the framework of the isomonodromy method (IM)
(see [5, 6]; see also [7])

The first results concerning the application of the IM to the global asymptotic analysis
of the PIV equation are due to Kitaev [8]. In [8] a complete description (including all
the relevant connection formulae) of the asytmptotic behaviour of the general solution of
equation (1.1) as — €7/*" 0o, j € 7Z was obtained.

In this paper, we follow the general methodology of [9], i.e. we combine the IM, the
Deift-Zhou nonlinear steepest-descent method [10], and the Kitaev method [11] for the
justification of the asymptotic results obtained via the IM.

Our main result, which completes the proof (up to the error term) of part (1) of the
Clarkson—McLeod conjecture and supplements it by exact connection formulae for the
asymptotic parametews(k) andc(k), can be formulated as in the following theorem.

Theorem 1.1Let 8, o, andk? be the real numbers such that,

=0
a—3¢7Z
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and

1 k?
25 / —
and letw(x; k%) be the corresponding Clarkson—-McLeod PIV transcendent, i.e. the unique
solution of equation (1.1) satisfying the boundary condition (1.3} as +oc. Then, the
Painlewe transcendenb (x; k%) is a meromorphic function of whose asymptotic behaviour
asx — —oo is described by the equation

2
w(x) = _% +2v/2a cos(x73 — V/3a%In(2V3x%) + ¢> + O((=x) Y*In(=x))  (1.10)
where
a’=— 1 N —|s_|% a>0
237
¢ = —3% - %a — argl'(—i+v/3a?) — args_ (1.11)
s_ = constant
and the connection between the asymptotic coefficieraads_ is given by
3/2q—ina
o AEmTe T, (1.12)

rG-a
We note that equation (1.10) coincides, up to the error term, with equation (1.5) and
yields the following exact connection formulae for the paramed€ks andc(k),

3
d2=—%|n(1—|s_|2) d>0

4 [ +1} on @ In3 argF( i2d2> arg
c=——+4nlat+ | —Fa—— — —l— - S_
4 2 3 V3 V3
where
2(2 3/2q—ina
S_ES_(k)zl—(n)—ez

INEE)

Remark 1.1The meromorphicity ofw(x; k?) does not need to be proven; this is a well
known classical fact concerning Paindetranscendents. Its elegant modern proof based on
the analysis of the corresponding Riemann—Hilbert problem is given in [12].

Remark 1.21t should be emphasized that we do not claim that; k%) does not have
singularities on the real axes. Moreover, as it follows from the numerical analysis performed
in[4, 2], w(x; k%) might blow up at finitex if « < —%. At the same time, the same numerical

results allows one to expect the absence of the real polegxafk?; ) if « > —%.

Remark 1.3As a by-product of the proof of theorem 1.1 (see remark 5.1 below) we also
obtain the followinglocal asymptotic result concerning the behaviour of the solutions of
the PIV equation as — —oo.

Theorem 1.2l et 8, o, a, and¢ be the real numbers such that,
o — % ¢ 7
and

a>0



4076 A R Its and A A Kapaev

(note that we do not assume that= 0). Then there exists a solutian(x) of equation
(1.1) which has the asymptotics indicated in (1.10xas- —oo. This solution is unique if
the error term@((—x)~¥*In(—x)), in (1.10) can be replaced &9(x~1).

As it has already been mentioned, this is a local statement, which does not reflect the
integrability of equation (1.1). In fact, in the cage= 0, « € R the existence of the two-
parameter familyw(x; a, ¢) of solutions of (1.1) characterized by the asymptotics (1.10)
with the error termO(x~1) has recently been proven by Abdulaev [13] without any use of
the isomonodromy method, i.e. without any use of the integrability of the PIV equation.
Moreover, combining the results of [13] with theorem 3.1 and corollary 4.1 below one can
replace the error term in (1.10) k9 (x~1) for any k? satisfying (1.9). This improvement

can also be achieved using only the isomonodromy technique. However, that comes at the
expense of much longer calculations.

Remark 1.4Similar to the case of the second Pairleaquation (see [14]), the IM allows
us to obtain a complete list of all possible asymptotics of the solutions of (14 )asco,
x € C. We shall publish this list elsewhere.

2. Monodromy parametrization of the PIV transcendent. The Riemann—Hilbert
problem

This section plays an important yet auxiliary role. For the reader’s convenience we collect
here, following [8], the necessary facts concerning the isomonodromy formalism for the PIV
equation. The detailed proofs of the results presented in this section can be found in [8]
and also in [15]. For the basic definitions and concepts related to the general monodromy
theory of systems of ordinary differential equations (ODEs) with rational coefficients we
refer the reader to the monograph [16] (see also [6]).

We shall use the Lax pair for equation (1.1) given in [8]:

% = {(;53 +&E(x +uv) + g) o3+ (&% + 2xu 4+ u')oy + (%0 + 2xv — v’)a} v

(2.2)
ﬂ = {(1532 + uv) o3+ i€uoy + iSva_} v, (2.2)
ax 2

Here, W (&, x) is a 2x 2 matrix function, andrs, o, o_ denote the Pauli matrices:

o) e} ()

The compatibility condition of equations (2.1) and (2.2) is equivalent to the following
system of nonlinear ODEs:

o' =0
u” + 2xu’ + u + 20u — dxu®v — 2vuu’ =0 (2.3)
v — 2xv' — v 4 200 — dxuv® 4 2uvv’ =0
which in turn implies that
B =u'v—uv + 2xuv — (uv)?> = constant (2.4)
and the product
w = uv (2.5)
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satisfies equation (1.1). This means that equation (2.1) is the linear matrix ODE with
rational coefficients whose monodromy data, according to the IM formalism (cf [5, 6])
form a complete set of the first integrals of Paiflexquation (1.1) and hence parametrize
its solutions. We shall now describe this parametrization in detail.

Linear system (2.1) has two singular points: one irregular singular pointato and
one regular singular point & = 0. Monodromy data associated with the pafnt= oo
consist of theStokes matrices; defined by the equation,

S = W E) Wy (8) keZ (2.6)

where ¥, (¢) denote the corresponding canonical solutions of system (2.1). The solutions
W, (&) are uniquely determined by the following asymptotic conditions:

V&) = +0E N 0=3+ 338+ (@— p)Ing

. 3n w7 T w (2.7)
s—)OO éea)k:{secargé€<—§+zk,§+zk>} k e 7.
We notice that

1 _ 1 O
SZk_lz(O SZkll) S2k=<52k 1)

and the complex parametessare calledStokes multipliers
Besides the Stokes matrices, the monodromy data of (2.1) includmtimection matrix
E, which is defined by the equation,

Vi) =V EE  E= (‘C’ 2) detE = 1 (2.8)

wherew(£) denotes the canonical solution near the regular singular peind. Assuming
hereafter that

% —a ¢ (2.9)
(the generic case), the solutidrP(£) is given by the equation,

woE) = U5 (2.10)
where U (£) is holomorphic and invertible in the neighbourhoodgof 0, and

U(0) = exp(/ uv dx 03>. (2.11)

We note that the functiod’®(£) is defined by equations (2.10) and (2.11) up to the right

matrix multiplier C?, whereC is an arbitrary non-zero complex constant. This means that
the connection matrix is defined up to the left multiplication by the constant diagonal

matrix C.

In the general case whetix), v(x), u’(x), v'(x) are just four arbitrary smooth functions,
the monodromy datéS;, £} depend orx. The monodromy data do not depend .otiff

du dv

U =— V= —

dx dx
and the functions, v satisfy system (2.3). In other words, all the Stokes multipligrand
the productsic, bd (see (2.8)) are the first integrals of the nonlinear system (2.3).
The Stokes matrices and multipliers satisfy certain general constraints. In fact, the set
of matrix solutions of equation (2.1) admits the symmetry automorphism,

V(&) — o3V (-§). (2.12)
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Applying this automorphism to the canonical solutiong at co, one obtains the equations

Skra = € TGS o @ hIo3 (2.13)
or

Sk = —ske(_l)kz”i("‘_ﬁ). (2.14)
Simultaneously, from (2.12) and (2.10), (2.11) it follows that

o3W0(€78)o3 = WO(£)e™ . (2.15)

The combination of equations (2.6), (2.15), and (2.8) implies the so-called semicyclic
relation:

818528354 = E loge 173 ET @ P03, (2.16)
This relation leads, in particular, to the equation
(1 + 5152) (1 + 5352) + 5152)€ 7@ — (1 + 5055)€7@ P = _2isinra (2.17)

which, together with (2.14), indicates that only three of the Stokes multipliers are
independent. For instance, under the generic conditions,

s1+S5_1+ 515 150 #0 (218)

the triple {s_1, so, s1} form the coordinates on the manifold (2.17).

Givene, B € C, equation (2.17) describes a hypersurface in the sfAcérom (2.16)
it follows that for the generic case (2.9) all essential parameters of the connection matrix
E are uniquely determined hy (cf the next section, formula (3.15)). Therefore, in the
generic case the monodromy data manifold can be identified with the surface (2.17), and
any three independent Stokes multipliers, a.g., so, s1, form a complete set of parameters
for the total set of monodromy data.

Under the gauge transformation,

W > PP & 5 1> 635,70 (2.19)

the parameters andv in (2.1) change to%u and e % v, respectively, so that the Painiv
transcendenty = uv, does not change. This means that any solution of PIV corresponds to
an orbit of the one-parameter group of the gauge transformations (2.19) of the monodromy
data manifold. The corresponding quotient manifold, which has dimension 2 in the generic
case (2.9), yields the parametrization of the entire PIV transcendent set. In other words, the
productssy 15y and the ratios*, with the integersc andm of the same parity, are the
first integrals of the PIV equati’én. In the generic case, any (independent) two of them can
be taken as universal parameters of the PIV transcendent.

Therefore, in the generic case (2.9) and under the generic conditions (2.18) the map,

{a, B, w, w'} > {a, B, s_150, 5150}
is one-to-one and the set,
s = {a, B, s_150, 5150} (2.20)

can be chosen as the monodromy parametrizations of the solutions of the PIV equation (1.1).
Assuming thatx is real andu(x), v(x), u’(x),v'(x) are the arbitrary real-valued
functions, the space of matrix solutions of equation (2.1) admits the additional

automorphism,

V() = a3 (§) (2.21)
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which in turn implies the extra symmetry equations for the Stokes matrices,

So = 0385 103 S1 = 038103 (2.22)
Hence, the real (for reat) solutions of (2.3) correspond to the additional restrictions on
the monodromy data,

S0 = So S_1 = S1. (2.23)

The reality condition for the functions (x), w’(x) is equivalent to the weaker than
(2.23) equation,

§_150 = §150- (2.24)
Therefore, given the real, 8 € R, and% — a ¢ 7 the complex parameter,
s— =1+ 5150 (2.25)

is enough to parametrize the real (for regqisolutions of the fourth Painlévequation (1.1).

As we will see in the next sections, the generic Clarkson—McLeod one-parametric family
of real solutions of (1.1) corresponds to the following specifications of the monodromy set
s:

1—s )& eR g =0. (2.26)
We note that under the generic condition (cf (2.18)),
Is_| #1 (2.27)

restriction (2.26) and semicyclic relation (2.17) imply equations,
s1+s3=0 and s2 = 0.

Besides the gauge transformation, the groupSchlesinger transformationsan be
defined on theV-function set. The action of this group preserves all the monodromy
data except the formal monodromy exponents, i.e. the parametans! 8, and yields the
Béacklund transformation®f the corresponding solutions of the PIV equation (1.1). We
indicate specifically the following two Schlesinger transformations:

U =ROY and U = Ry

where

i 1420
RO =1+ - —"—
—i_’g‘va—v’GJr

R=(5 %)

The corresponding &klund transformations are given by the equations,
21+ 20)w

and

w=w+w/_(w2+2xw+ﬁ) @=-a—1 a—f=a—p (2.28)
and
N w o ow B . S
w:g—g—x—k% @ =—o a—B=a—-p+1 (2.29)

respectively. Transformation (2.28) is due to Kitaev [8] and transformation (2.29) is
due to Lukashevich [17]. (For a comprehensive exposition of the theoryaokiBnd
transformations of the PIV equation and for a detailed historical review of the subject we
refer the reader to [18].)
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The theory of systems of linear ODEs with rational coefficients, and particularly the
complex WKB method, provides a tool for analysing ttheect monodromy problenfor
system (2.1), i.e. the map,

w > s. (2.30)
To put the correspondinigiverse monodromy probleme. the inverse map,
s w (2.31)

into a proper analytical context, let us introduce a piecewise analytic matrix funétign
on the complex plan€&, which coincides with the functiod, (¢) in the closed sector

mk —1) nk}

< args < —
gé 7

The functionW (¢) has the following characteristic properties:
(1) In the neighbourhood &f = oo, the functionW¥ (&) satisfies the asymptotic condition
given by the equation (cf equation (2.7)),

W(E) =T +0E )™ 0 =2+ 12+ (@ — p)Ing. (2.33)

(2) In the neighbourhood of = 0, the functionW (¢) admits the representation given
by the equation (cf equations (2.8), (2.10)),

W(E) = U(E)EE(E) (2.34)

where ¥ (&) is holomorphic and invertible in the neighbourhoodéof 0, andE (§) is the
piecewise constant matrix:

ka{geC: k=12....8 (2.32)

E(é):EE(Z Z) ad —bc =1 arge € Q4

EE) =ES;...Si1 £e k=12...,8

(3) Onthe rays, = {§ € C: argé = Zk}, k=1,...,8, oriented from zero to infinity,
the functionW (&) has jumps given by the equations (cf equation (2.6)),

W, (6) = W_(£)S, £enm k=1,...,7
W, (§) = W_(£)Sge 2@ P £€ys

where the symbol¥, andW_ denote the limits of the functiod on the raysy; from the
left and from the right, respectively.
The branches of the functior§$ and In¢ are fixed by the condition,

0 < argé < 2n.

(2.35)

It is worth noticing that equation (2.11) does not need to be added in (2.34); it follows from
properties (1)—(3) of th& -function.

The inverse monodromy problem (2.31) for system (2.1) is equivalent (in the generic
case (2.9)) to the followindgRiemann—Hilbert factorization problengiven Stokes matrices
Sr and connection matri satisfying conditions (2.13)—(2.16), find the piecewise analytic
function W (&) having properties (2.33)—(2.35). The Riemann—Hilbert problem is depicted
in figure 1.

The solution¥ (¢) of the Riemann—Hilbert problem (2.33)—(2.35) is unique (if it exists)
and satisfies the symmetry equation,

03U (—&)age T @ P for Im

£>0
_ (2.36)
o3V (—&)oze™ @ P forImé <0

v (E) ={
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Figure 1. The Riemann—Hilbert grapp for the W-function.

Also, since the matrice$;, E depend neither of nor x, one concludes that the logarithmic
derivatives,\IJE(‘g)lIJ(g)‘l and W, (6)W(£)~L, are rational functions of. More exactly,
taking into account the asymptotic conditions (2.33), (2.34) atoo, 0 and the symmetry
relation (2.36) it follows that (cf [19])

We(E)W(E) " = 3E%03+ Ak’ + ArE + Ao+ A 15 (2.37)
and

W ()W () = 3E%03+ Bi§ + Bo (2.38)
with the matrix coefficientsA, and B, indicated in (2.1) and (2.2), respectively, and the
functionsu(x), v(x) given via the asymptotics of (§) as& — oc:

Y(E) = (1 + g(—iucu +ivo_) + 0(5—2)> s, (2.39)

This provides the formula,
w(x,s) = miomo

m = Jim [ — 1) (2:40)

for the solution of the Painlé&vequation (1.1) corresponding to the given monodromy data
s. Alternatively, one can use the equation (cf (2.11)),

w(x,s) = % In ¥11(0). (2.41)
In the next three sections, we will prove the solvability of the Riemann—Hilbert problem
(2.33)—(2.35) for sufficiently largéx|, x € R and under the assumptions (cf (2.26))
B=0 aeR o — % ¢ 7
S0 = S0 S_1=s1 (2.42)
O<|s_| <1 1-—s_ )" eR
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on the monodromy data. In fact we will take this further. We will obtain explicit
asymptotic solution of this problem, which will enable us to derive the connection formulae
(2.11), (1.12) announced in theorem 1.1 and eventually prove the theorem itself.

It is worth noticing that the inequality

O<|s_] <1
implies inequality (2.27) so that assumptions (2.42) yield the equations,
s2=51+s53=0 s150 # 0.

Itis in fact for these, weaker than (2.42) restrictions, that we will prove in the next section the
solvability of the problem (2.33)—(2.35) for sufficiently large positieThe full constraint
(2.42) will be needed in sections 4 and 5 where we analyse the case of negative

We conclude this section by referring to [19, 12] where the solvability of the Riemann—
Hilbert problems which appear in the modern theory of the Panksyuations, and which
are similar to the problem (2.33)—(2.35), are discussed in the general setting.

3. Solution of the inverse monodromy problem:x — +oo

In this section, we shall prove the following theorem.

Theorem 3.1Suppose that, = 0, s1 +s3 =0, s150 # 0, 8 = 0, anda — % ¢ Z. Then for
sufficiently large positiver, the inverse monodromy problem for system (2.1) is uniquely
solvable, and the corresponding solutiar{x) of the PIV equation (1.1) possesses the
following asymptotic behaviour as — +o0:

. 1
w) =~ 2R (G -a) e e on ). @)

Proof. The proof is based on the asymptotic solution of the matrix Riemann—Hilbert problem
(2.33)—(2.35) via the Deift-Zhou nonlinear steepest descent method [10]. The restrictions
on the Riemann-Hilbert (monodromy) datassumed in the theorem make the use of the
method especially convenient.
Assumingx > 0, we can perform the scaling transformation,
£ xY2% (3.2
and
a=p

WU x~ 2 By, (3.3)

We shall keep the old notatio;(¢), for the new-function so that the asymptotic condition
(2.33) should be replaced by the condition,

VE) =T +0E N 0=xMo+(@—p)Ing o= 3+ 3£ (34)
and equations (2.40) and (2.41) should be replaced by the equations,

w(x, s) = xmompoy

m = Jim [V (@E)e ~ D] (3:5)
and
d .
w(x,s) = —% + o InW,(0) (3.6)

respectively.
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Our aim now is the asymptotic solution of the Riemann—Hilbert problem (3.4), (2.34),
(2.35) under the assumptions,

so=0 s1+s3=0 s150 # 0 B=0 3.7)
and
X — 400.
We start with observing that the equations,
s2=0 s1+s53=0
imply that the jump matrices, satisfy the relations
So=Ss=1 515583 = S58657 = 1 (3.8)
and therefore
Vs (8) = W3(§) We(§) = W7(8) Wa(§) = Wa(8) Wg(§) = Ws(8). (3.9)

This means that the Riemann—Hilbert problem (2.33)—(2.35) is equivalent to the problem
on the contour (cf [10]),

yaUysUp1U s (3.10)
which is shown in figure 2. The corresponding jump conditions are:

1 N
W, = WS 51=<0 S11> Eep
1 0
U, =W_§, Sy = <S4 1> §ewn
. 3.11
U, =W o= (1 —se £ep o
+ = ¥-05 5=1\o 1 V5
— 2o — 2o e—27riot 0
W, = W_Sge2rieos Sge 2! 3=< 54 eZnia) § € ys.
The curvesp; andyps are thesteepest-descent contourfthe exponenty, i.e.
Im&o(§) =0 & €15 (3.12)
¥
1
\‘{’2/
‘Pl
Y b
qJS
A /}l_\
s 6

Figure 2. The Riemann—Hilbert graph for the degenerated probiges 0, 51 + s3 = 0.



4084 A R Its and A A Kapaev

which are asymptotic to the rays, y; andys, y7, respectively. Orientation of the curves
71 andys coincide with the orientation of the rays andys, respectively (see figure 2). In
addition, the curvey; passes through the saddle poi@é(o(s) =0),

£ =iv2
while the curveps passes through the saddle point
£, = —iv/2.

Simultaneously, under assumptions (3.7), the semicyclic relation (2.16) takes a very
simple form,

Sy = E " loze 7% %3y (3.13)
or
o _ L p—ina
1 0\_( ad+ liyce2 2bd COST[OEZiE (3.14)
sq4 1 —ac(e?m 4 1) ad + bce ™
and hence
b=0 ad =1 sa = —ac(e¥™ 4+ 1).
Therefore, we arrive to the following representation for the connection matrix
E = a (_ L f) (3.15)
e21\a+1

and equation (2.34) for the reduced Riemann—Hilbert problem (3.11) assumes the form,

W(E) = W(g)gees (_ 1S4 g) arge € [0; 7]

Fr1

1 0 (3.16)
W(E) = U(g)Er ( i > arge € [r; 2n].
elea+1e2 1 g [ ]
Let us define a new functiord (¢), by the equation,
D(E) = W(E)e ™. (3.17)

In terms of ®(¢), the Riemann—Hilbert problem (3.11), (3.16) can be rewritten as the
following set of conditions.

1)

DE)—> 1 & —> o0 (3.18)
(2)

D, = D_Gy = ( Slgzaeb 00) Eeh

0
DL =D Gy =<S4$ —20 o 2x20, 1) §€ya
bt £ 20 24760 (3.19)
®, = &_Gs =<(l) —sie 92&6) £ e s
0
O =D _Gg <—S4(e IJT‘,;_- )~ 20 o= 2¢26, 1) 1S V8-
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3
R 1 0
q)(s) = (D(E) (_eznij+ls—2ae—2x200 1)
argé € [0; 7] ) . (3.20)
(I)(S) = (I)(};:) (ezﬂf:Jrl(eni%—)Zanxz(?o 1)

argé € [r; 27].

It should be emphasized that no asymptotic analysis has been made so far. The Riemann—
Hilbert problem (3.18)—(3.20) is just a reformulation of the original problem (2.33)—(2.35)
under the assumptions; = s1 +s3 = 0, 8 = 0. The main advantage of this reformulation,
besides thd-normalization of the asymptotic condition &t= oo, is that thed-problem
is posed on the steepest-descent curves of the expépestt that all the jump matrices
approach exponentially the identity as— oo.

Our next (and the final) step is the asymptotic solution of the problem (3.18)—(3.20).
The basic idea is to approximate the exact solutha§) by the product,

Qo(§) =Y(5)X(8)

where the matrix functionX (§) andY (&) are the solutions of the model Riemann—Hilbert
problems related to the contoups U y5 and y4 U y5 = R, respectively. More exactly, the
functionsY (¢) and X (&) are determined by the conditions:

(1) Y (&) is analytic inC\y, U ps,

2) Y(E) — I asé — oo,

3)
Fe=rGrbenm (3.21)
Y, =Y Gs §eys
and
(1) X (&) is analytic INC\y4 U ys,
(2) X&) > I as& — oo,
3)
X+ =X_Gy §€Ya (3.22)
Xy =X_Gs §€ys
4)
5 1 0
X&) =X(§) (_ 5 g—2ug2% 1) argé e [0; ]
et . o (3.23)
X&) =X(#) <ez,rf;‘+1(e‘”ié)‘2°‘e‘2‘z"° 1) argé € [x; 27].
Assume temporarily that
Rea < &. (3.24)

2
Then both the model problems, (3.21) and (3.22), can be solved explicitly in terms of the
Cauchy integrals:

YE)=1+y@&)oy X&) =1+h@)o- (3.25)
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where
211er290(1') —im 20(e2x290('[)
y(g)zs_l_/ t—d,_s_l_/ ET )T
2ni Jy T & 2mi Jy, T—§&
2ae2x200(r)
81 T
_ 21 —d 3.26
i 5 /);1 T2 — &2 ‘ (3.26)
—20 ;—2x260 (1) —ir —20 —2x20p(T)
he =g [ - [
2ni J,, t-—¢& 2mi J,, T—§

—20 5—2x20p(7)
_ S e
= nig ; g dr (3.27)
and the integrals in (3.27) are well defined due to assumption (3.24).
Now let R(¢) be a matrix ratio,
R(E) = d®[Po®)] =2 XE) YE L (3.28)

A comparison of equations (3.19), (3.20) and (3.22), (3.23) showsR@t has no jumps
and singularities on the real axis, includigg= 0, but still have jumps on the contour
71 U p5 where it solves the following Riemann—Hilbert problem:

(1) R(¢) > I as& — oo,

2)

R, = R_Gg (3.29)
where
Go=Y_ XG15X 1G5ty 1 £ €. (3.30)

The curvesy,, y1, andys are the steepest-descent contours for the expahént (see
(3.12)) so that the integral representations (3.26) and (3.27) lead to the uniform estimates,

C _.
ly-&)| < Ee‘x (3.31)
and
C 2Rex—1
|h(€)] < Ex (3.32)

for all x > 1 and¢ € y1 U ps. Rewriting equation (3.30) componentwise, we derive from
(3.31), (3.32) the inequalities,

11— G (©)]| < Clg[?Rea~1y2Rea—12x%%0(®) (3.33)
and
(Go (ENial < C|§ PR Ly 2Rox -T2t (3.34)

which hold uniformly for allx > 1 and¢ € y; U 5. In addition, from (3.33) we have an
estimate for the correspondirig-norm as well:

2Rea—

_ 3 .
11 = GotlLyuge < Cx?R& 267, (3.35)

We note that the actual value of the positive constans not important to us and may be
different in different formulae.
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By a standard technique in the theory of the Riemann—Hilbert problem (see e.g. [20];
see also [21, 10]), the solutiaR(¢) of the Riemann—Hilbert problem (3.29) is given by the
formula

_ 1 1 dr
RE) =1+ o /ﬁu% p(O)[I = GoH ()] p— (3.36)
wherep (&) = R, (£¢) solves the equation
p=1+Ci[pI =Gy (3.37)

in Lo(y1 U ps)), andC,. is the corresponding Cauchy operator.

The L,-boundness of the operatdr,. (see e.g. [22, 20]; see also [21, 23]), together
with estimates (3.33), (3.35) imply the solvability of the singular integral equation (3.37)
for sufficiently large positiver and the asymptotic equation,

3
1T = ol Lauuge = OG*267) x — 400 (3.38)

for its solutionp (§).
The solvability of the singular integral equation (3.37) yields the solvability of the
Riemann—Hilbert problem (3.29). Rewriting representation (3.36) for the sol&{@nm in
the form,
1 dr 1 dr
RE=1+-=—| [I-Gs")] o ) p@ -l - Go' (D] —

2721 S5 #1075 §
and applying again estimates (3.33), (3.35) together with estimates (3.38) and (3.34), we
conclude that the inequalities,

T T

C 2
IT — R®)| < Exme"—ze—x (3.39)
and
C 2Req—2 —2x2
|R12(8)| < T e (3.40)

take place uniformly for alk € iR, |&| > 2v/2.

The solvability for sufficiently larger of the Riemann—Hilbert problem for function
R(&) implies in turn the solvability of the basic Riemann—Hilbert problem (3.18)—(3.20) and
hence the solvability, for sufficiently large positiveof the inverse monodromy problem for
system (2.1) under assumptions (3.7). Moreover, estimates (3.39), (3.40) and equations (3.5),
(3.28), (3.25) lead to the following asymptotic representation for the corresponding Rainlev
function w(x):

w(x) = x(mdy + OE*~2e72%)) (md, + O(* %)) (3.41)

where
i 2
md, = —51/ 720 g 0™ dg
g
and

[ oy 232
m3; = —S4/ T2 20 gr,
va

Evaluating the last two contour integrals by tHassicalsteepest-descent method, we obtain
that

i e’
0 a AT
mi, = 512%¢€

N — @+ O™
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and

1 - 1
md, = ﬁs4e—2'7w‘x2a—11“ (é - a) 1+ 0x™Y)
which, in virtue of (3.41), yields the asymptotics of the Paiéldéunctionw presented in
the theorem:
- 1 2
w= 2Leirer <— — a> 2§ H@-binx (1 L o) x 5 oo (3.42)
32 2
(note that due to (2.14), = —sg€?79).
Asymptotics (3.42) has the form (1.3) with the parameter

; 1 1
2 _ T & -
k® = —s051€ 2(27_[)3/2F (2 a) . (3.43)
Moreover, if we want the asymptotics (3.42) to be consistent with the reality condition, the
extra restriction,

515467 = —5051€™ € R (3.44)

should be imposed on the monodromy data. This in turn yields specification (2.26) of the
Clarkson—McLeod Painlé/transcendent.

In [3] it was shown that a suitable chain of thédklund transformations (2.28) and
(2.29), properly combined with the transformation generated by the rotatior; ix,
preserves the Stokes multipliess and the value of the parametgr= 0 and transforms
o — «a + 1. Moreover, the same chain of thea&klund transformations preserves the
exponential behaviour (1.3) with the substitutions:

a—a+1
k2

k% I
Ol+§

In view of equation (3.43), this allows us to drop the conditiorvRe % in formula (3.42)
and hence complete the proof of theorem 3.1. O

4. Solution of the direct monodromy problem: x — —oo
Let us make the gauge transformation (2.19) witk:  Inv —  In(—x):
W s (—x) " dp2 Wy 7 (—x) 4 (4.1)

so that the basic system (2.1) transforms to the matrix equation,

dw . 1, o . _12 2 w’ 1 B
E_{<EE +§(x+w)+g>a3+l(—x) w(é} +x+ﬂ+§w+ﬂ>a+
+i(=x)¥? <$2+x—;—w+%w+%>a}\y. (4.2)

This equation belongs to the general class of systems (2.1)' (are not necessarily the
x-derivatives ofu, v), and it is specified by the condition,

v = (—x)¥2 (4.3)
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Condition (4.3) is not gauge invariant, and the monodromy data for system (4.2) are uniquely
determined, in the generic case, by two complex parameters,

S_150 5150
for complex pairs{w, w’}, and by one complex parameter,

s_ =14 5150 (4.4)
for real pairs{w, w’}. This fact, which implies the injectivity of the map,

{w, w'} — s_ (w, w’ are real (4.5)

has already been mentioned in section 2 (see (2.20)—(2.25)) where the monodromy theory
for the systems of class (2.1) has been outlined (without the detailed proofs) according to
[8]. The injectivity of map (4.5) will be especially important to us in section 5 and will be
proven there for the reader’'s convenience.
It is also worth mentioning that for the arbitrary pair of the real-valued (for xgal

functionsw(x), w’'(x), the monodromy parameter depends orx. It does not depend on
x iff
, dw

T odx
and the functionw(x) satisfies the PIV equation (1.1). It should be emphasized that
even in this case the Stokes matrices of system (@#&y depend ornx via the similarity
transformation,

S (x) = &735(0)e %,

The main objective of this section is the following result.

w

Theorem 4.1leta, 8 € R, ands*, s_ be the complex numbers satisfying the conditions,

0<|s*| <1 (4.6)
and
s_eD(*e)={s_e€C:ls_ —s"| <¢} O0<e<min{l—|s"|, |s*|}. 4.7)
Define the functionsv(x) andw’(x) in (4.2) by the equations,
w=wl,s)= = + 2+/2a cos® "= do(x, 5-) (4.8)
3 dx
where
1
a’=— In(1—|s_|? a>0 4.9
>3 1 —1s-19 (4.9)
2
X
0 = — —/34%In(2V3x?) + 4.10
NG ( )+ ¢ ( )
3 2 .
¢ = _TH —Fe—p- argl' (—iv/3a?) — args_
and denote

S_(x,s_) =1+ So81(x,s-)

the corresponding monodromy parameter (4.4). Then there exist real cortahts) > 0
andxg(s*; &) < —1 such that

15_(x, 5_) — s_| < (—x)"3C(s*; &) (4.11)
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for all
x < xo(s*;¢) s_ € D(s*;e).
As it is indicated, the constant3(s* ; &) andxg(s*; £) only depend on* ande.

Throughout this section, the dependence of all the estmatesamal 8 is not important
to us. The crucial point is that the r.h.s. of inequality (4.@lbes not depend on, i.e.
estimate (4.11) is uniform o (s*; ¢). This will allow us to use Kitaev's method [11] and
transform in section 5 (see theorem 5.1) the above result into the rigorous statement about
the asymptotic behaviour of the Paindetranscendenb(x,s_),0 < |s_| < 1 asx — —o0.

Proof of theorem 4.1The change of variables,

()12 - (— e =02+ =
E=(—x)"\ w = (—x)r w = —(—x) (r~|—2t)

=T 2o em=veoy e
T=w T )= wEC
brings equation (4.2) to the form:
do 1, o . 5 r B r’ 1
a—zt{(é)\. +)\.(V—1)+ﬁ>0'3+|r<)\.—1+é+m— Z—I-Z (o
iz 1yl B (22 _
ci(mre e L (e b)) o= 413

The matrix A is already of orderO(1). Hence, in carring out the relevant asymptotic
analysis, one can appeal to the classical WKB-method (see [24—-26]).

One of the principal elements of the complex WKB-method is the eigenvalues of the
system (4.13), i.e.

U1 = £ = £+ —detA
which are given by the equation,

1 8 2\ o -— B «?
2 2 2 2
u==(r—==)(r—-=) + A+ p+ 4.14

4 ( 3) ( 3) 2t P 4¢2)2 ( )

where

_1<,+r)2 1 8 2\° B—4a  20—B B2
P=4 " 7o) ~a\""3)\' " 3 a2 1e

Because of assumption (4.8),

2 2a
r ==+ ——Ccos®

3" Vi
r 4q 3a? 1
"+ —=——(1— — |sin® + — 4.15
" +2t ~/3;( 2t> +3t ( )
2t
O = — —/342In(43) +
Ne ( )+
and we have the estimates,
% <r<l1
1 (4.16)

1
Ipl < ;Co(a)
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for all
t > tgla) > 1 a:0<a;<a<ay <400

where the positive constantga) andcg(a) depend continuously on the quantity
System (4.13) has eight (if # 0) and six (ifo = 0) real turning points, i.e. the zeros
of u(d). It follows from (4.14) and (4.16) that these points can be numerated in such way

that
A \/5 < L (@) A \/E A A A
- = X —=C1d < - < = —
13 3 7 1 3 3 1 2.4 1.3
8 1
)‘-5 - \/t < _C]_(Cl) )‘-6 = —)\_5 (417)
3 t
1
|A78] < ;Co(a) rg = —A7 A7>0 a#0
for all
t > t1(a) a:0<a;<a<ay<+o0o

and some positive;(a), c1(a) depending continuously odm.

The pointsi; and A3 tend to\/g ast — oo, and therefore the poir\;/g should be
considered as an asymptotically double turning point. The painisbehave similarly, so

that the point—\/g is another double turning point. The poirits andAg = —As are the

single turning points. The turning points and Ag = —A; merge with the singularity at
the point zero.
Using the continuity of the mapping,

S_t>a= \/— 2«/1§n In(1 —|s_|?)

and the compactness of the domdlGs* ; ¢), we conclude from (4.16) and (4.17) that there
exist the positive constants = C(s*; ¢) andzy(s*; ¢) > 1 such that

1
Ipl < ;C(si;e)

2a° B —ua
P t 3t

1
§<r<1

2
A13 — 3

1

< 137C(Sf2 €)

1 *
< ﬁC(L; €) (4.18)

1
A7l < ;C(Si; €)

Vs_ € D(s*; ¢) Vt > to(s*; €).

Remark 4.1 Hereafter we shall assume the following convention.
The symbolsC, C;, andz, denote positive constants, which only dependsbrande:

C=C(s"s0) Ci =Cj(s*;¢) fo = 1to(s”; €).
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Symbol 1, which will appear later, denotes positive constant, which only dependg ,on
g, andsé:

11 =th(s’; e 8).

The actual values af, C;, to, andz; are notimportant to us and may be different in different
formulae.

Let us now outline the basic steps of the IM technique (cf [7, 9]) which we are going
to use in our proof.
(1) Calculation of the WKB-solutionsb¥¥B and VKB associated with the double

turning point\/g and related to the Stokes rays arg: & and argh = —3, respectively.

(2) Calculation of the solutio®™ near the double turning poirv/g.
(3) Matching of the canonical solutiong, and W_; with the WKB-solutions®'/®
and ®VKB respectively. Asymptotic evaluation of the matrices,
Ce = [P W] 12 _1(E (). (4.19)
(4) Matching of the WKB-solutions®'*B with the turning point solution®™.
Asymptotic evaluation of the matrices,
N =[] Y B (). (4.20)
(5) Using the equation,

(4.21)

C_lN_lN+C+ — 3% 13,03,1 _ <1 +5.15% Sa+5+ §1§0§1)

50 1+ §o81
for the derivation of the asymptotic formula for the indicated product of the Stokes
matrices corresponding to the coefficient function= w(x, s_) given in (4.8). Asymptotic
evaluation of the monodromy parameter,

§- = (5_15081)22. (4.22)

Technically, we are going to perform the standard WKB-type calculations (cf [7]) but by
undertaking special efforts (cf [9]) to secure that all the estimates are uniform with respect
tos € D(s*; ¢e).

Step 1. WKB-approximation.Let us introduce the notations, a,, a_ for the entries of
the matrixA from (4.13):

A=azo3+a,0, +a_o_. (4.23)
Consider the gauge transformation of the matbix

PN =TANYN) (4.24)
with the matrixT given by

T:(é é) (4.25)
where

hy = 93 _i'i<u—a3>/

ay 2t 2u ay
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and(...) = dﬂ ...). Here,u? = a§ + a,a_, and its exact expression is given in (4.14).

We also assume that the functigri)) is defined on the complex plane cut along the small
segmentsAg; A3), (A2; A4), (A7; Ag) and along the ray$is; +00), (Ag; —00). The branch
of the root is chosen in such a way that\) — %)ﬁ — A asiA — +ioo.

The new functionY (1) satisfies the equation

dy
d_AZZtBY (4.26)
with the matrix
_ Cl3+d+h1+H1 H2
B= ( —H; az+ayhy — Hp (.21)
where
1 ay (n—az\
astahi=u-5 5\
+
1 ay (p+az)
az+a hzz—u——~—< )
* 2t 2u ay
/2 N
1 1 a 1 —a 1 —a
ned iy L GO G )
t1+”_+(ﬂ) 2u 2u a; 21 a4
4tu? \ ay
/ 2 N
1 1 a 1 fnu+a 1 fu+a
ey G ) 2]
L+ (&) ' ’
Let
4
1a —a
w5 (52)
A= 1 taz\
ar [ p+a
n- g (52)
1 , a’, 1 /w al
— - —as—=* ——(=-=)1 4.28
W3+4tu<a3 asa+>03 4t<u o (4.28)
and
R=B—A=<_Igl _122). (4.29)

The WKB solution of (4.26) associated with the double turning pg@tcan be defined as

A
YWKBO) = x (M) exp{Zt / Adk} (4.30)
Ao

where the lower limit.y can be chosen arbitrary, and the matrix functjoir) satisfies the
integral equation,

xO) =1+ ZI/ e(ZIf;A(Z) dZ)R(C)X(E)e(_th; A(z) dz) de
y()

—I+2 e f; n(z) dzzrg{e/;A n(2) dzagR(é.)X(é.)ef f; n(2) dZO’g}
Y3 (4.31)

xe’z’ f; 1u(z) dzog dé‘
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Here, y (1) = (y1(A); y2(1)) is a matrix of the canonical paths (cf [26]), i.e. the simple
contours which start a and end up ato, and which satisfy the conditions:

A
Re/ w(z)dz 4+ +o0 {—o00 {en)
¢ (4.32)

A
Re/ w(z)dz | —oo §{—> 00 ¢ € y2(R).
¢
Matrix equation (4.31) should be understood as the system of four scalar equations:

oy =out2 | & e @=Ma % (R (2 () .
Yk
Let 12 be the anti-Stokes’ lines defined by the equations,
Im ; u(z)dz=0
and asymptotic to 1t:1e the rays, arg= +£2, (y1) and arg. = £7, (y2). We denoteD.
the corresponding canonical domains:

0D+ = yi Uyl U[hs, . (4.33)

We note that domai®, (D_) contains exactly one Stokes ray, i.e. the ray jasg 3%(—%”).

We shall use universal symbdl! for the canonical domains when the distinction between
D, andD_ does not play any role.

Being a canonical domain means exactly (cf [26]) that for each D there exists
matrix y (1) of the indicated above canonical paths such that:

(1) )/1’2()») cD VA e D,

(2) for any two pointsj, A’ € D, the following equation takes place:

i) —y; )+ 2, A] =92, A) j=12
for some bounded2; (1, A’) C D. In other words, any twag/; (1), y;(A) have the same
infinite parts.

Integral equation (4.31) is written for the canonical dom®&in Property (4.32) of the
canonical paths and properties (1) and (2) of the canonical domain imply that the integral
operator on the r.h.s. of (4.31) is well defined as a bounded operator on the Banach space
of holomorphic and bounded i® matrix functions. Our next task is to estimate the norm
of this integral operator.

To analyse integral equation (4.31) we need some basic estimates. Let

D’ = {1 € D: dist{r; 9D} > 1219}

(4.34)
% >8>0
and rewrite the entriegs, a, in the form:
1 2 g
w=2(-2) (H _)
2 1/2(32 _ 2
3 A (4.35)

2
2;1/2< 3> ,1/2)@ lg] < C r>1 M =p>0

a+—|r —

3
. t1/2 2 ,1/2
(s

’ r

-l
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Let us also expand the functiopg), 1=1(A) anda;l in the series over the inverse powers

of A% — &:

w1y = |2 (52_2) [;2_ 8 ( > e )

z (x)—[z <A 3> ) 3} ;'ﬂ'()@ (4.37)

1 _I S h” i

PR T IEN C D —i=€ez 4.

ay r(kz—%)( +;( ) tn/Z()\Z_%)n> =€ (4.38)
where

_1\yn—1 _
= -y - CYT @D
" (4.39)

8\ * a—p o?
_ 2 © 2
v(A)—4(A 3) ( 5 A +tp+4tkz)

andh is given in (4.33). From (4.39) and (4.16) we immediately conclude that
_— 7 A < —
pp WIS pE
v € D° Vs_ € D(s*; &) Vi > fo.
These inequalities, together with the similar inequalitiesgf@nd/ (see (4.35) and (4.36)),

imply that there exists positive constant= #,(s*; ¢; §) such that the series in (4.37) and
(4.38) and their term-by-term derivatives with respeck toonverge uniformly for

(A,s_,1) € D° x D(s*; &) x [t1, +00).

This fact justifies the obvious sequence of elementary formal manipulations with the series
(4.37), (4.38) which leads to the following uniform estmates for the quantaties involved in
the matricesH »:

)< C W)l <

s e (4.40)
2p
1
— < (4.41)
11+ 55 (2]
1 uia3>‘ [A]
= <c—" 4.42
2u< a A2 — £|2 (4.42)
72
1 Miasﬂ |72
<C———— 4.43
0z Zﬂ( = e (4.43)
1 (pxaz\\ A2
(— (“ a3)> <o M (4.44)
2/L ay |)\,2— §|3

v € D° Vs_ € D(s*; &) Vi > 1.

We emphasize (cf remark 4.1) that positive constahtsndz, in all our formulae depend
only ons* ande:

C,tg=C(s";8),10(s*; &).
Positive constant; depends only os*, ¢ and$:
=11(s7; &; 9).
Inequalities (4.40)—(4.44) imply the following proposition.
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Proposition 4.1.For everys_ € D(s*;¢) andt > t; reminder R(1) defined in (4.29) is
holomorphic inD? and satisfies the uniform estimate

55
1222 — 2|3 (4.45)
VA € D° Vs_ € D(s*:¢) Yt > 1q.

IRV < C

To estimate the part,

A
exp{ / n(z) dz}
¢

of the kernel of integral equation (4.31) we note that from (4.35), (4.36), and (4.38) it

follows that
1 2 A2
aé—aga—+——<kz——)‘< 1]
a, 2 V2= 2| (4.46)
Vi € D° Vs_ € D(s*:¢) Yt > 11.

Simultaneously, series (4.37) yields the equation,

1 2
= A+ po) (4.47)
A
n(r) /)Lz_g(kz_%)
where
C Cq
< ——— < = 4.48
|1l _2p S (4.48)
for all
reD? s_ € D(s*;¢) and t>n.

Inequalities (4.46)—(4.48) lead to the estimates,

1/, d 1/, 2))‘ C I
Z(ah—ast — = (222 4.49
‘2u (“3 “a, 2( Vinz—2p (4.49)
and

S PPN A COR | 2_g>> dz
f{ (as(z) ) 5 2<z —
“““( “3)) 5
Hf / }<“3(Z) PRI 3)) 2u2)

|z] Cy

<$‘/; |Zz—g / 2 2|2|Z|<t—5

Vi, ceD’ Vs_ € D(s*; Vi >t (4.50)

(the integration in the last two integrals is performing along the rayB%p This in turn
means that

A az 1/, 2 dz C
eXp{f; (ag(Z) BPREI <Z - _)) 2u(z)} 1‘ Sp (4.51)

Vi, € D° Vs_ € D(s*:¢€) Vi > 1.
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At the same time, because of (4.47), (4.48) we have

r2_ 2 1 A+r2-%
3
/ —2dz==In—— + 11 (4.52)

¢ 2 2_ 8

{+4,¢°—3
where

C [~ |dz| C (™ |dz| C
el < 7/ ‘ + / <
¢

- ~
m“zz_az t J, ‘ﬂ“zz_%f 13+ (4.53)

Vi, ceD’ Vs_ € D(s*;¢) Vi > 1.

Formulae (4.51)—(4.53) imply the following proposition.
Proposition 4.2.The function (see (4.31)),
ef;"r;(z) dz

satisfies the uniform estimate,

i 1/2
A A
|e/f ﬂ(Z)dZ|<C’E

VA, € D° Vs_ € D(s*; ¢) vVt > t1.

(4.54)

Let K denote the integral operator on the r.h.s. of equation (4.31). In virtue of the
property (4.32) of the canonical path and estimates (4.45), (4.54) tf)-norm of K
satisfies the inequality,

|A]

IKllcoy) < Cm <

NI =

(4.55)
v e D° Vs_ € D(s*: ¢) Vi > 1.
This means that integral equation (4.31) is uniquely solvable in the Banach space of

holomorphic and bounded i®’ functions and that its solutiog (1) satisfies the uniform
estimate

2] C1

2 2,2 < 2517 13"
t|r? — 5l 12| A (4.56)
Vi € D° Vs_ € D(s*; &) vVt > 1.

Ix) =1l <C

Along with the matrixT () (see (4.25)), let us consider the matrix

1 1
where
o — K —as hg — _Htas
a a+
Since
1_ 1.4 (u as)/ _1 a (m)
2t 4u? ag 2t 4u? a

Tyt ONT () =
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we can use inequalities (4.40), (4.42) again and conclude that

[A] C1
122 — 52 T 2P (4.58)
v € D° Vs_ € D(s*; ¢) vVt > 1.

Equations (4.24) and (4.30) together with estimates (4.56) and (4.58) lead to the
following basic lemma.

IT, 20T — 1) < C

WKB lemma. Let D’ be the canonical domains defined by equations (4.33) and (4.34).
Then in each regiorDy, there exists a WKB-solutionp B (1) of system (4.13), which
admits the following representation:

OWKB (1) = To(MYWKB (1) = Ty xe (W)e” 1 O (4.59)

The matrix functionsTy(A) and A(1) are given by explicit formulae (4.57) and (4.28)
respectively. Matrix functiong. (1) andx_(A) are holomorphic iriDi andD? respectively
and satisfy the uniform estimates,

C
AN =1 < =——
09 = 111 < 57 (.60)

Vi e DL Vs_ € D(s*; &) N
In (4.60), positive constar® depends only or* ande:
C=C(sZ;¢)
positive constant; depends only or*, ¢, andé:
fh=t(s’; € 8).

Step 2. The local solution near the double turning point/e consider the neighbourhood
of the double turning poin{/g:

Uz{k: )\—\/g

To construct the local asymptotic solution in the area (4.61) it is convenient to make the
gauge transformation

1 1

The functionZ (1) satisfies the equation

< 2t%+8} 0<s<i. (4.61)

0Z ~ o R
T 2tAZ A =azo3+ a0, +ao_ (4.63)
where
N 1 ]2 2
asz = —2 —I §03 +ay + §a_
] 12 o 2 a
&Jr = e_lg—2 {2 §a3—e_'§a++ ée'ﬁa} (464)

iz 1 2 i 2 _ix
a_ = e'€—2 {2\/;aa+elﬁa+ - §e|6a_}
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and we recall (cf (4.13)) that

2t
. B r’ 1
—ir(22-1 2 (L=
o r( +2+4tr <2r+4t

. i r i
a__|< 1+2+ +(2r+ ))

In the area (4.61), due to (4.15), the matrix (4.63) can be represented in the form

13
as = 5h FA— 1)+ o

A() = Bo() + Ro(L) (4.65)
where
Bo()) = ii A— \/? o3+ a\/?e_iz_ie)o
V3 3 ! *
2 i1 _
+a\/;e'6+'(”)o_ = b3o3+bioy +b_o_ b_=by (4.66)

while for the matrixRy(1) the following inequality holds:

[RoM)|| < ™3¢
Vs € D(s*; ¢) vt > to(s”; )

(4.67)
VA:A—\/g <2t_%+‘S 0<5<%.
The model equation
dz
dA" = 2By Zo (4.68)
is exactly solvable in terms of the Weber—Hermite functidhgz) (see [27]):
_ [ D_y—1(iz) Dy (2)
Zo(\) = <D—v (i) D (z)) (4.69)
where
x2 2
= elZ \7«/__ ()» §>
3 (4.70)
.+/3 .
v+1= |§tb+b = iv/34?
1 dD Z iBr s
=5 —5P = V/3ae 27, 4.71
bo(dz 2) bo = 3ae @.71)
The local solution of equation (4.63) can be defined now as the product (cf (4.30)),
Z(A) = xo(A)Zo(2) (4.72)
where the matrix functioryp(1) satifies the integral equation
r
100) =1 +2 [ 2 Z5 ORE 101261250 k. .73)
V273

This is a Volterra equation with the regular kernel. As it follows from the known (see e.g.
[27]) integral representations and asymptotic expansions for the parabolic cylinder functions,
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the functionsD_,_1(z(»)), D,(z(1)), and their derivatives are bounded uniformly with
respect tas_ € D(s*; ¢), if

LeS={reU:|Rez’(M)| < 1}. (4.74)
This yields immediately the following estimate in the star-shaped region defined in (4.74):
1ZoWZ I <C Vs e D(s*;e)  z,L€S. (4.75)

The Volterra equation (4.73) has a unique solutigth), which is analytic in the whole
neighbourhood/ and satisfies there the estimate,

Ixo) — Il <&€* -1 (4.76)
where
A
o) = th 1Zo) Zg (O - IR - 1 Zo(¢) Zg * M) 11 |
V2/3
and the integration is performing along the radius of the diskBecause of (4.67) and
(4.75), in the star-shaped regichthe inequality,
o(h) <27t C
holds. This leads to the following lemma.
Turning point lemma. Let U and S be the disk and the star-shaped region defined by

equations (4.61) and (4.74), respectively. Then in the diskhere exists a turning point
solution, ®™P(1), of system (4.13), which admits the following representation:

P = VZO) = Vxo(h)Zo(L). (4.77)

Matrix V and the matrix functiorZy() are given by explicit formulae (4.62) and (4.69),
respectively. Matrix functioryg(i) is holomorphic inU and satisfies the uniform estimate,

1
» =1 <t 2*¥C 0<s§<i
I xo() — I <d<3 (4.78)
Vs € D(s*; ¢) vireS t>tg

in the star-shaped regiast In (4.78), the positive constants andz, depend only ors*
ande:

C=C(s*;¢) fo=1t(s; ).

Step 3. Calculation of the matric&€s.. Let us consider the matrix
Cy =[PV B M Wa(E) = [To) Y B )] Wa(E(1). (4.79)

The matricesCy a priori do not depend or.. In particular, this means that when
evaluatingC, we can use the equation,

Cy = lim {[To)Y{"® (0] WaEG))} (4.80)

reDy
Taking into account the fact that in the domdn,
) ~ 323 =2 A — 00 (4.81)
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we derive from (4.57) the asymptotic equation,

Tyt () = <é _o%) {1 +0 <%>} (4.82)

A — 00 A eDy.
Equation (4.82) together with the equation,

> d
YWB () =y, (e i MO

and estimate (4.60) imply the following explicit formula for the matfix:

c. = /%] iim {/ﬂ
Wl Sess LV a+
x<1 _,_)} (4.83)

A

where the notatiom s is used for thers-component of the diagonal matrix (see 4.28):

A n 1 , al,
= —az—az— ).
3= HM 4 3 3a+

s
exp( — 2t/ Azdios + (}§4+ )—CEZ +(a—p) Ing) 03>
N A 8 2

+
0

Similarly,
C_ = [V B TW_1E0)) (4.84)
a+ . w *
=\/: lim { [ — exp(—Zz/ Azd)os
Kol hese WV vl Ao
1 _ir
— (554 + 252 + (@ —B) ln§> Ug) ( B 1) }al (4.85)

where we have taken into account the fact that in the dorPairestimates (4.81) and (4.82)
should be replaced by the estimates

w) ~ =323+ £ — 00 (4.86)

Tyt (h) = <_0i7r 2) o1 {1 +0 (%)} (4.87)

respectively.
Equations (4.83) and (4.84) in turn can be used for evaluation the asymptotics of the
matricesCy ast — oo. Indeed,

and

A
ZI/ Azdr =2t(g(A) — g(ho)) + I (A, Xo) (4.88)
Ao

where the functiorg (1) is given by the equation,

1o/, 8\ 1 1 [, 8

— iv/34d%In (k—l—\/E)Z_ %(1+i\/§)2
(+ +M)Z —2(1-iV3)

(4.89)
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and the remaindef (1, 1o) satisfies the following uniform estimate:

(A, xo)| <17°C

4.90
V(A Ag) € D° x D° Vs_ € D(s*; ¢) Vi > 1. (4.90)

In (4.89), the function, /A2 — g is understood as a single-valued analytic function on
C\(—o0, —\/g] U[\/g, +00) which has the asymptoticg,k2 — g ~ A, asi — ioo (cf with

the definition ofc(1)). The branches of the rest of the involved multivalued functions are
fixed by the conditions,

0< arg[)\ + \/@} <7 reD. (4.91)
O<arg[<)\+\/)»27—§>2—§(1+ix/§)2} <x  AeD (4.92)
—x <arg|:<k+\/)»27—§)2—§(1+i\/§)2:| <0 reD'  (4.93)
O<arg|:<k+m>2—§(l—ix/§)2} <n  ieDL.  (4.94)

From equation (4.89) and conditions (4.91)—(4.94) it follows that

M1 1 1 b
N=——-=+4+4+—"(a- Z)In2x 12 - 4.
g =3 2+3+2t<“ ﬁ+2>n +0(1™) O<argh < 3 (4.95)

asi — oo A €Dy, and

) = 14+k 1 1 +1 n >t

s =gtz gz @ Fr3)ng
T 21007? _ T _argr<0 (4.96)
/3 2 '

asi — oo, A € D_. Taking into account also the uniform with respectstoe D(s*; &)
andr > r1(s*; ¢; §) estimates (see (4.37), (4.38)),

m V3L iz 1 1 T

— = —0¢ 1 =+ = O<argh < - 4.97

o =2 4[+O<A2+t5>} <argh < = (4.97)
asi — oo, A € D), and

T V3w 1 1 P

—=—2e4|14+0( =5+~ ——<argh <0 4.98

=2 [ + <k2+t5 5 < argh < (4.98)

asi — oo, A € D?, we end up with the following asymptotic equations for the matrices

Cy:
C, = &+ 1 (210~ 2+922 214w, )a3 93 4.99
+ = ; +{ +C+(I)}e 72 ( - )
)‘0
C_= /a_+ (I + C_(t)}e(Ztg()ha)+%*¥|n2[+w_)0307]-2 (4.100)
Mol
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where
a)+——i£—1'|g <a—,3+1'>|n2
4 23 2 (4.101)
w_=—E+}Ing+<a—ﬁ+})ln§+2—na2
4723 2) 4" /3

and the matrix functions. (z) are diagonal and satisfy the uniform estimate,

les] < t_‘s

t>n s € D(s*; €) AT e D

Step 4. Calculation of the matrice¥.. The connection matriced/. are defined by

equations (cf (4.20)),
[a+
AV M
(4.102)

Ne = [0 Mo B ) = [L
a+
Similar to C4., the matricesV. do not depend on. This means that when evaluating
N+ we may assume that
LePL=DiNS 0<é<i. (4.103)

The obvious advantage of this choice is that in the matching area (4.103) both the functions,
xo(A) and x. (1), are asymptotically close to the unit matrix as> oo.

It follows from the definitions of the matriceg and To()) (see (4.62) and (4.57)) and
from estimates (4.37) and (4.38) that

|V iTo() — I <:7°C Ve Py Vs_ € D(s*; ¢) t>t. (4.104)

On the other hand, if is the variable defined in (4.70), then in the regions (4.103) we have
that

» diror
Z3 0005 20V o) xa (e B N,
A

3
i for » € Py

|z]| = o0 and argg — (4.105)

T
- for A _
a epP

ast — oo. Therefore, in (4.69) we can use the known largasymptotic expansions of
the parabolic cylinder functions (see e.g. [27]). This yields the equation,

2 A
Zo' ) =Gt <1 3 b0> g GGm(vibinaoa 7, () A€ Py (4.106)
where
1Zo() — 1| <t7°C Vi € Py Vs_ € D(s*; ¢) t>h
and

V27 —iZv
TotD € 2 1

dZ o+ V21w (v+1)

(4.107)

e iz0+D
o - (59



4104 A R Its and A A Kapaev

The parameters andbg are defined in (4.70) and (4.71).
In the matching domain®.. the functiong () (see (4.88), (4.89)) admits the following,
uniform with respect to_ € D(s*; ¢) andr > t;, asymptotic representation:
2 .
Z It v+1 1
2tg(A) = = — Ding — — Int O +¥
g() 7 (v+21ing Jé+2 +q+0@ 2™

A e Py t — 00

(4.108)

where
. 7im 1 1 8 1\ im

and the variable and the pure imaginary parameteare the same as in (4.69). It should
be emphasized that in both equations (4.106) and (4.108) the branch &f tretermined
by the same rule (4.105).

Simultaneously, from (4.37), (4.38) it follows that

ay 1 2 1
— =2 \/j ol = 4.110
Ve T9V3 - <f5> ( )
ast — oo uniformly with respect to\ € Py, s_ € D(s*; ¢) andt > 1.
Consider the domaifP, and assume that
A Ag € Py

In virtue of equation (4.108) and the characteristic property (4.74) of theSsehe
exponential term in (4.102), i.e. the matrix,

eZt j}% Az dios
is uniformly bounded and does not affect the power-like error terms in all the other objects
involved in equation (4.102). Hence the asymptotic formulae (4.104), (4.106), (4.108), and

(4.110) together with the estimates (4.78), (4.60) for the functigyid), x. (1) produce
the following asymptotic equation for the connection matvix:

M= (T, ) ) (@.111)

where the matrix functiom, (z) satisfies the uniform estimate,
|n+|<E §= max min{§; 1 —35} =1
18 5e(0,1/6) T2 8

t>1g s € D(s*;€) Aar e P,.
Similar arguments, based on the restriction,
A, Ay € P_

yield the similar equation for matriy/_,

N_ = G:l (1 b )e(—Ztg(Ao)—Jé+”J£1|nt+q)U3{I +i’l,(t)}
—00

| <i-hc (4.112)

> s € D(s*; ¢€) Ay € P_.
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Step 5. Calculation of the monodromy matrices. The completion of the proof of theorem 4.1.
We are now ready to calculate the product of the Stokes matrices indicated in (4.21). In fact,
substituting the asymptotic formulae (4.99), (4.100), (4.111), and (4.112) for the matrices
C., N1 into equation (4.21), we obtain that

S 18081 = CTINTIN, Cy = o€ (1 _bl) G_G}! (1 bo) {I +n()) e+
0

- 1 _bO%eirr(v-‘rl) -
—_ —03 —V o3
= 0,6 (L o i ) {I +n()}e™ (4.113)
bo T(v+1)
where
it v+1 2t a—§B
F=———lnt—g—— N2 — w_
/3 2 13+, @
it v+1 2t oa-—p
Fp=—— Int - — In2¢
v 7 +— +tq-5+— +wy
and the matrix:(¢) satisfies the uniform estimate,
n| < t75C
t>1 s € D(s*; €).

In obtaining (4.113) we also took into account the fact V@te P+, and hence
a+

1
[E —~1+0(3).
ay Ay M A0+ t

because of (4.110).
Recalling the definitions of the parametéss v (see (4.70), (4.71)) and., g (see
(4.101), (4.109)), equation (4.113) can be rewritten in the folowing form:

A A a o 1 Ll eiBi0_2r _gn/3d
saissimaee( L R
V3a [(iv/342)

x{I + n(t)}efiEaerl'[Ugf‘/Ténazag (4.114)
where

E=Lﬁ—?azlnt—«@azlnzf—%(a—ﬁ—%) (4.115)

“?%”;ﬂ'n2t—£m2+%(a—ﬁ—%>ln§ (4.116)
and the matrix functiom (z) satisfies the uniform estimate,

In| <t73C

t =1 s_ € D(s*; ).

The object of our prime interest, i.e. the monodromy parameters given by the 22
entry of the matrix producs_; 5051 (see (4.22)). From (4.114) we find that

i im_ibt i 2 3 2
e
—I
1 ( ) (4.117)
lc] <t78C

t >t s_ € D(s*; e).
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To complete the proof of theorem 4.1 we only need to notice that, in virtue of the identity,

1 it sinzi
. _ T Tt reR
ING2) T
the equation,
o iE-ig—io__V 21 Pra? _ o (4.118)

—e_
J3a T'(—iv/3a?)
is equivalent to the exact formulae (4.9), (4.10) for the functians= a(s_) and

©® = O(x, s_) suggested in the theorem. One also has to remembek that /2.
The proof of theorem 4.1 is completed. |

Remark 4.2 Suppose that instead of exact equations (4.8), the functign3 and w’(x)
satisfy, asx — —oo, the asymptotic equations,
_ dw(x) d (1

& P

w= —% + 2v/2a c0os® + O (E> w’ ) =01 (4.119)
X

where as before

a’ = _2«/11_%71' Ind —|s_|? a>0 (4.120)
2

O = %3 — V322 In(2v/3x?) + ¢ (4.121)

¢ = —37” - %(a — B) — argl'(—iv/3a%) — args_.

Then all the estimates we made during the proof of theorem 4.1 would be still valid, provided
of course that we are no longer interested in making them uniform with respect tm
particular, we would end up with the equation (cf (4.117)),

§.=— [ Q2s-ig-io_ YV N 2w
V3 T'(—iv/3a?)
Observe now that formulae (4.120) and (4.121) establish a one-to-one correspondence

between the real pairg,a),a > 0,¢ € R mod 2r and the complex numbers ,0 <
|s_| < 1. Hence we arrive at the following result.

e P L O ) =5 + 008, (4.122)

Corollary 4.1. Let «, 8, ¢ anda be the real numbers such that- 0 anda — % ¢ 7Z (the
only restrictions). Suppose that the PIV equation (1.1) has a real solwiionsatisfying
asymptotic condition (4.119) as— —oo. Then this solution is unique, i.e.

w(x) = w(x;a, P)

and the corresponding monodromy parameteis given by the equations,

s_|2 =1 — g 2/’ (4.123)
and
3 2n : 2
args. =—— — (@ —fp) - argl' (—iv/34%) — ¢. (4.124)

Equations (4.123) and (4.124) are valid without any restrictions on the parameter
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5. Solution of the inverse monodromy problem:x — —oo

In this section, we prove the following theorem.

Theorem 5.1Suppose that the monodromy set (2.20) related to system (4.2) satisfies the
conditions,

B,axeR a—%¢Z
S_150 = $150 O<|s_| <1 s_ =14+ s150.

Then for sufficiently large negative, the inverse monodromy problem for system (4.2)
posed as the problem,

s_ = {w, w'} (5.1)

is uniguely solvable, and the corresponding solutigix) of the PIV equation (1.1) is real
(for real x) and possesses the following asymptotic behaviour as —oo:

wx) = W(x, s_) + O(=x)"* In(=x)). (5.2)

In (5.2),w(x, s_) denotes the explicit function introduced in theorem 4.1 by equations (4.8)—
(4.10).

Proof of theorem 5.1.Let us first prove the easy part of the statement, i.e. the reality of
w(x) and the unigueness of the solution of the inverse problem (5.1).
The reality ofw(x) follows (cf (2.23), (2.24)) from the following lemma.

Lemma 5.1Let

dw
% =A@G)V(E) (5.3)
3
be the equation from subclass (4.2) such that for its monodromy data the condition
ls—| #1 (5.4)

holds. Assume also that < 0. Then the following three statements are equivalent.
(i) The Stokes multipliers.i, so satisfy the equations,

50 =350 §_1 = S51.
(ii) The Stokes multipliers.1, so satisfy the equation,
S_150 = 5150.

(i) The functionsw(x), w'(x) are real.

Proof of lemma 5.1.The implication,(i) = (ii), is trivial. The implication(iii) = (i) has
been, in fact, proven in section 2 (see (2.21) and (2.22)). Hence, it is enough just to prove
the implication,

(i) = (iii).
From the equation,
S_150 = 5150
we derive the following representations for the multipliers, so:

so = |sol€® s1= |s1]€ s_1 = |sq|e0r7200 (5.5)
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(s150 # 0, since|s_| # 1). This in turn implies that
So = e’i5°“363§glagei5°“3 and S = e’i3°“363§:llagei5°“3. (5.6)
Set
A(§) = € "%03A (§)oze ™ (5.7)
and consider the system
dz—? = AV (). (5.8)

Denoting W, (¢) and W, (¢) the canonical solutions corresponding to equations (5.3) and
(5.8), respectively, we have that

P (&) = €730 (§)oe argé = — argé k=-1,012
k(-1) =2 k@O0 =1 k(1) =0 k@2 = —1.
This together with (5.6) yield the relations,

Se = Sk k=-1,01 (5.9)
From (ii) and (5.4) it follows that
2
-1
S1+85_1+ 515_150 = % # 0.
0

Therefore the generic condition (2.18) is satisfied, and hence the Stokes matricss
determine uniquely the rest of the monodromy data of equation (5.3). Because of (5.9), the
same is true for equation (5.8). Moreover, from (5.9) it follows that both the systems have
the same set of the monodromy data. This means that the matrix ratio,

F(§) = Wo(§) ¥, (§)

is an entire function which has the asymptotics,
F@)—1 § — 00

in the whole neighbourhood &f = co. Therefore,
F) =1 vé

and we end up with the identity,
Wo(§) = Wo(§)

which is followed by the equation,

A(E) = A(§) Ve e C. (5.10)
From (5.10) we conclude that the matix&) must satisfy the symmetry equation,
AE) = € "%03A(E)oge™™ V& (5.11)

whoseé£? term in the 21 component implies that
1 = 2% (5.12)

This equation in view of (5.11) yields the reality af, w’, i.e. the statement (iii). Also,
from (5.5) and (5.12) it follows directly thafy = so ands_; = s;, i.e. the statement (i).
The proof of the lemma is completed. d
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The uniqueness of the solution of the inverse monodromy problem for system (4.2) in
the setting,
s_ > {w, w}
follows from the following proposition

Proposition 5.1.For real{w, w’} and under the conditiorjs_| # 1, the monodromy map
for system (4.2), i.e. the map,

{w, w'} — s_

is one-to-one.

Proof of proposition 5.1Givena, 8 € R, o — % ¢ 7 consider two systems,

dw () _ @) _ ;-

& AV () and & AV ()

from subclass (4.2) with the redl, w’} and {w, w’}, respectively, whose monodromy
parameterss_ ands_, coincide,

S_=35_ ls_| # L. (5.13)

Let {Sk, E}, W (&) and{Sy, E}, Wi (§) be the monodromy data and the canonical solutions
corresponding to each of the two systems, respectively. Because of equations (5.13), the
Stokes matrices; o and Sy o are related by the similarity transformation,

S = €8S e<os k=01 (5.14)
with some parameter. Due to the reality ofw, w’, w, andw’,
Eo =350 §o = §o E]_ =51 .;1 = S“,l

so that the number?e must be real and equation (5.14) must be truekfer —1 as well.
Arguing as in the proof of lemma 5.1, we conclude that the two systems with the coefficient
matrices,

A(§) and EBA(E)e 3
respectively, have the same set of the monodromy data, and hence the relation,
AE) =€ A" ™ V&

is present. Considering again t§é term in the 21 component of the last equation, we
obtain that

e =1
and therefore,
AG) =AEG) Ve
or
{w, w'} = {0, W'}
which completes the proof of proposition 5.1. O
To prove the most interesting part of the statement, i.e. the existence of the solution of

the inverse monodromy problem (5.1) and the asymptotics (5.2), we shall use theorem 4.1
and Kitaev's method [11].
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Let s* be the complex number satisfying the inequality,
O<|s*] <1
and letD(s*; ¢) be the closed disk,
D(s*;e) ={s- € C:|s_ —s5*| < &} 0<e<min{l—[s*|, [s*]} (5.15)

as in theorem 2 (cf (4.7)). Taking. € D(s*;¢), we consider the coefficient functions
w(x,s_), w'(x,s_), and the corresponding monodromy da&tdx, s_). From the general
theory of systems of ODEs with rational coefficients (see e.g. [16]) it follows that the
canonical solution®; of system (4.2) are smooth functions.afw, w’. This implies that
§_(x,s_) is a continuous function of—oo; —1] x D(s*; ¢).

Let us introduce the functiog(x, s_) by

S_(x,s_)=s_+g,s). (5.16)

The continuity of the functios_ and theorem 4.1 imply that:
(1) the functiong(x, s_) is continuous on—oo; —1] x D(s*; ¢),
(2) there exist the constan@& = C(s*; &) > 0 andxg = xo(s*; €) < —1 such that

lg(x, s)| < (=x)"3C VX < xo Vs_ € D(s*; ¢). (5.17)
Now let us consider the equation,
s_+glx,s.) =s" s_ € D(s*; ). (5.18)

Introducing the variable = s* — s_ and the functiong(x, ) = g(x,s* — 1), one can
rewrite equation (5.18) as

gx,1)=1 1€ D0;8) ={r:|t| <¢g}. (5.19)

Picking anyx < x1, x1 = —max{(—xo); (C/¢)*}, we conclude that the functiof(x, -) is a

continuous function from the compact diBKO; ¢) into itself Thus the Brouwer fixed point

theorem implies that for each< x1, there exists at least one solution of the equation (5.18).
One can see that the solution of (5.18) is uniquexfet min{x1; x,}, where

[ 1 1/2
xp = —3V2( - In(1 — sj+52> <0.
2 ( > an Q- (sZl+&))
Indeed, letx < x1 and suppose that there are two complex numbers_ satisfying (5.18).
Consider the pairgw(x, s_), w'(x, s_)} and {w(x, 5_), w'(x,5_)}. For the corresponding
monodromy datd_(x,s_) ands_(x,5_) we have

S_(x,s)=s_+g(x,s5_)=s"* S_(x,5)=5_+4gkx,5-)=s"
so thats_(x,s_) = §_(x,5_). Due to proposition 5.1, we obtain that

w(x, s_) = w(x,5_) W (x,s_) =W (x,5)
or

a cosO (x) = a cosO(x)

342 332 ~
a <1 - —2) sin®(x) =a (1 — —2> sSin®(x).
X X

In terms of the new complex variablés= a€®, Z = ae®, these equations become

3, . 3., -
Z-S1ZPAmZ =27 - =|ZAmZ.
X X
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This yields the following inequality:
~ 9CO ~
Z—-Z2I< —|Z—-Z|
X
whereCy is defined by

1
Co= max a?><— N — (Is*| + &)%) = —x2.
0 DG e 2./37 (1= (sl ) 1872

If x < x» <0, we conclude thaZ = Z, i.e.a = a and® = © (mod 2r), and therefore

S_=5_.
Assuming that

X < x3 = min{xy; x2}

we will denote the unique solution of (5.18) as(x; s*). This function:
(a) is defined forx < x3;
(b) for all x < x3 satisfies the equation

s_(x, %) + glx, s-(x,57)) = s~ s_(x,s%) € D(s*; ¢)
(c) for all x < x3 satisfies the inequality
Is_(x,s%) —s*| S xT3C(s*;6) <&
Now, the last step of the proof. Let us define
ad
w(x,s*) = w(x, s (x,s*)) w'(x,s") = 3—113(x, S )5 =s_(r,s7) x < x3.
X
Taking these functions as the coefficients in the system (4.2), we find that the corresponding
monodromy data satisfies the equation
S_=85_(x,5_(x,5")) =s(x,s") + g(x,s5_(x,5%)) =s*
for all x < x3 and hence does not depend.onThis means that:
(i) for any x < x3, the pair{w(x, s*), @’'(x, s*)} is a solution of the inverse monodromy
problem (5.1) corresponding to the monodromy dta
(ii) the functionw(x, s*) coincides with the solutiom (x, s*) of the PIV equation (1.1)

corresponding to the monodromy parameter

This implies the equation
w(x,s*) =wlx,s_(x,s*)) x < xa(s*; ("3) (5.20)
Vs* :0<|s¥| <1 and O< e <min{l — |s*|, |s*|}

which completes the proof of theorem 5.1. In fact, it remains to use estimate (c) for function
s_(x,s*) and the smoothness of the functioms= a(Res_, Ims_), ¢ = ¢(Res_, Ims_)
for s_ € D(s*; ¢). O

Remark 5.11t has already been noticed (see remark 4.1) that the map,
O<|s_] <1 s_ > (¢, a) a>0 ¢ € Rmod 2
given by the equations,

a? = _2«/1§7r In(1—[s_1%) a>0 (5.21)
¢ = —3771 — %(a — B) — argl' (—i+/34d?) — args_ (5.22)

is a bijection. This fact, theorem 5.1, and corollary 4.1 imply the local asymptotic result
formulated in theorem 1.2.
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6. Proof of theorem 1.1. Connection formulae.

Let the parameters, 8, andk? satisfy the conditions of theorem 1.1, andust; k%) denote

the Clarkson—-McLeod solution of the PIV equation (1.1) characterized by the boundary
condition (1.3) ast — +oco. Assume also that in theorem 3.1 the monodromy data are
chosen so that the equations,

50 =350 §1 =51
2(27t)3/2e—i7w: )
5150 = ———7———

take place. We note that this, in particular, implies that
0+# 5150€7% € R

and hence (cf (2.26), (2.27)),
so =281+ 53 =0.

Taking into account the uniqueness of the solutioiix; k?) and comparing the
asymptotics (1.3) and (3.1), we conclude that the Pa@nleanscendeniv(x; k%) is real
for real x and the direct monodromy map,

w(x; k%) > s_(k?)

is given by the explicit formula,
B 2(277:)3/2e—i71a k2
rG-a

To complete the proof of theorem 1.1 we only need to refer to theorem 5.1 noticing that
inequality (1.9) is equivalent to the inequality,

O<|s_| <1
if s_ is given by (6.1).

s_(k¥) =1 (6.1)

Acknowledgments

This work was supported in part by NSF grant no DMS-9501559 (Al) and by RFFI grant
no 96-01-00668 (AK).

References

[1] Clarksan P A and McLed J B 1992 Integral equations and connection formulae for the P&irdquations
Painle\e Transcendents, their Asymptotics and Physical Applicate@h® Winternitz and D Levi (New
York: Plenum) pp 1-31

[2] Hicks A C, Clarkse P A and Bassm A P 1993 A study of the fourth PainlévequationApplications of
Analytic and Geometric Methods to Nonlinear Differential Equatieds® A Clarkson (Dordrecht: Kluwer
Academic) pp 315-30

[3] Bassom A P, Clarkson P A, HiskA C and McLed J B 1992 Integral equations and exact solutions for the
fourth Painlee equatiornProc. R. SocA 437 1-24

[4] Bassom A P, Clarkso P A and Hicls A C 1993 Numerical studies of the fourth PairdezquationMA J.
Appl. Math.50 167-93

[5] Flaschka H and NewklA C 1980 Monodromy- and spectrum-preserving deformatio@immun. Math.
Phys.76 65-116

[6] Jimbo M, Miwa T and Ueno K 1981 Monodromy preserving deformation of linear ordinary differential
equations with rational coefficienBhysica2D 306-52



Connection formulae for the fourth Painkewanscendent 4113

Jimbo M and Miwa T 1981 Monodromy preserving deformation of linear ordinary differential equations with
rational coefficients. IPhysica2D 407-48
Jimbo M and Miwa T 1981 Monodromy preserving deformation of linear ordinary differential equations with
rational coefficients. llIPhysica4D 26-46
[7] Its A R and Novokshenov V Yu 1988he Isomonodromy Deformation Method in the Theory of Painlev”
Equations (Lecture Notes in Mathematics 118w York: Springer)
[8] Kitaev A V 1985 Self-similar solutions of the modified nonlinear Sifinger equatiorTheor. Math. Phys.
64 878-94
Kitaev A V 1988 Method of isomonodromy deformations for complete third and fourth P& réeuations
PhD Thesid_eningrad State University (in Russian)
Kitaev A VV 1988 Asymptotic description of the fourth Paingeequation solutions on the Stokes rays analogies
Zap. Nauch. Semin. LOMI69 84—9 (Engl. transl. 1991. Sov. Math54 N3)
[9] Its A R, Fokas A S and Kapaev A A 1994 On the asymptotic analysis of the Paimguations via the
isomonodromy metho#llonlinearity 7 1291-325
[10] Deift P and Zhou X 1993 A steepest descent method for oscillatory Riemann—Hilbert problems. Asymptotics
for the MKdV equationAnn. Math137 295-368
Deift P and Zhou X 1995 Asymptotics for the Paingell equationCommun. Pure Appl. Mathi8 277-337
[11] Kitaev A V 1989 The justification of the asymptotic formulae obtained by the isomonodromic deformation
methodZap. Nauch. Semin. LOMI79 (in Russian)
[12] Fokas A S and Zhou Xin 1992 On the solvability of Paingeil and IV Commun. Math. Phys.44 601-22
[13] Abdulaev A 1997 Justification of asymptotic formulas for the fourth PaileguationStud. Appl. Math99
255-83
[14] Kapa&r A A 1992 Global asymptotics of the second PaiévanscenderfPhys. LettA 167 356—62
[15] Milne A E, Clarksm P A and Bassm A P 1997 Application of the isomonodromy deformation method to
the fourth Painle& equatiorninverse Problemd3 421-39
[16] Sibuya Y 1990Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation
(Transl. Math. Monogr. 82fProvidence, RI: American Mathematical Society)
Sibuya Y 1997 Stokes phenomeBall. Am. Math. Soc83 1075-7
[17] Lukashevith N A 1967 Theory of the fourth Painlévequation]. Diff. Eqns3 395-9
[18] Bassom A P, ClarksoP A and Hicls A C 1995 Eacklund transformations and solution hierarchies for the
fourth Painlee equatiorStud. Appl. Math95 1-71
[19] Fokas A S, Mugan U and AblowitM J 1988 A method of linearization for Painkeequations: Painlév
IV, V Physica30D 247-83
[20] Clancey K and Gohberg | 1981 Factorization of matrix functions and singular integral opetgterator
Theoryvol 3 (Basel: Birktauser)
[21] Beals R, Deif P A and Tomei C 198®irect and Inverse Scattering on the Line (Mathematical Surveys and
Monographs 28)Providence, RI: American Mathematical Society)
[22] Litvinchuk G and Spitkovskii T 1987Factorization of Measurable Matrix Function®asel: Birkrauser)
p 51
[23] Zhou X 1989 Riemann-Hilbert problem and inverse scatte8gV J. Math. Anal20 966-86
[24] Wascow W 1965Asymptotic Expansions for Ordinary Differential Equatidghew York: Wiley—Interscience)
[25] Olver F W J 1974 Asymptotics and Special Functioffdew York: Academic)
[26] Fedorjuk M V 1983Asymptotic Methods for Linear Ordinary Differential Equatiofdoscow: Nauka) (in
Russian)
[27] Bateman H and E#&lyi A 1953 Higher Transcendental Functioridlew York: McGraw-Hill)



